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Abstract We describe an efficient method for estimating enterprise input-output ta-
bles for cases when only information on marginal totals is available. In order to es-
timate the production structure of enterprises, we utilize engineering knowledge to
construct a qualitative prior containing 1 wherever an output may require an input,
and 0 otherwise. This qualitative prior is then scaled by the total enterprise turnover,
and subsequently reconciled using the RASmethod in order to meet accounting rules.
We demonstrate the usefulness of this method in an application to dairy product man-
ufacturing in New Zealand, where we estimate the input-output tables for 22 produc-
tion sites. Our analysis is carried out in units of mass, and hence the accounting rules
are mass balance requirements.

Keywords enterprise input-output tables · RAS matrix balancing · qualitative
prior · dairy industry
JEL Classification Q560 · C650 · L660

1 Introduction

Perhaps one of the unconventional uses of input-output analysis is its application to
processes and networks within firms. Nevertheless, so-called enterprise models have
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been constructed for more than 40 years (Farag 1967). A true enterprise model is
different from single-region input-output models where the inputs and outputs of a
firm augment the table by one sector (Tiebout 1967; Billings and Katz 1982; Joshi
2001). Rather, the firm is appraised as a system in its own right, and represented as
a table distinguishing functional units of the firm as row and column sectors (Grubb-
strom and Tang 2000; Lave 2006). Perhaps the most comprehensive and at the same
time pioneering work is that of Polenske (1997), who demonstrated the usefulness
of an enterprise input-output model that is embedded in the nested system of re-
gional and national input-output tables. Since then, a number of interesting enterprise
input-output models and their applications have been published worldwide (Correa
and Craft 1999; Marangoni and Fezzi 2002; Li et al. 2008; Lenzen et al. 2010a),
notably by Albino and colleagues (Albino et al. 2003; Albino and Kühtz 2004).
Polenske’s basic idea was taken up again in recent input-output-based hybrid life-
cycle approaches, where a so-called foreground system containing interdependent
production processes is embedded in a national input-output table (Heijungs and Suh
2002; Suh 2004).

Our work is about employing an enterprise model of the dairy industry in an as-
sessment of life-cycle input coefficients of dairy products. Our approach is motivated
by the fact that, given a growing population and demand for food and at the same
time limited land resources for cultivation, the food sector - including the dairy in-
dustry - faces increasing pressure to move toward more resource-efficient production
as measured in the context of life-cycle systems (Flysjö 2011). Therefore, standards
and guidelines have been developed (for example, ISO 14044 2006; IDF 2010), and
efforts have been made to quantify the resource and environmental impacts of the
dairy industry (Berlin 2002; Lundie et al. 2002; de Vries and de Boer 2010; Nilsson
et al. 2010). More recently, the industry and retailers have started to systematically
quantify and publish the environmental impacts of their products. These industry ac-
tivities have so far concentrated on carbon accounting, that is, carbon footprinting
and carbon labeling (Carbon Disclosure Project 2011). These carbon-related report-
ing and labeling activities are predominantly based on the methodology of life-cycle
assessment (ISO 14044 2006).

In particular, we investigate whether enterprise input-output approaches can be
employed to deal with the multi-functionality issue in environmental Life-Cycle As-
sessment, which has been identified as a significant methodological problem (ISO
14044 2006, Ciroth et al. 2008). When assessing the environmental performance of
products, the general situation is that most processes that constitute part of a pro-
duction system are multi-functional: (1) they may produce more than one product
(co-production), or (2) they may treat two or more waste inputs (combined waste
treatment), or (3) they may treat one waste input and produce one valuable output.
Combinations of these main types, involving three or more of the above basic func-
tions on both the input and output side may also occur (Heijungs and Suh 2002).
Multi-functionality is especially present in dairy manufacturing systems. For exam-
ple, the input of raw milk on a whole-of-plant basis needs to be allocated to the final
products: skim milk powder, butter and buttermilk powder.

ISO 14044 (2006, Section 4.3.4) states that in all such cases the materials and en-
ergy flows as well as associated environmental releases shall be allocated to the dif-
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ferent products according to clearly stated procedures. Several approaches for deal-
ing with the multi-functionality problem have been developed, for example, through
system boundary expansion and by allocation (or partitioning) using physicochemi-
cal, economic, mass and energy approaches (see, for example, Cederberg and Stadig
2003; IDF 2010; Feitz et al. 2007; Weidema 2003, 2004).

2 Aim of this work

Enterprise input-output tables, the basic ingredient of the studies listed above, are
usually constructed based on data gathered during firm surveys. Such surveys usually
gather data on inputs and outputs for various sub-processes or sub-branches of the
firm, which are then collated into a complete input-output table. It is the aim and
also the novelty of this work to demonstrate a semi-survey method for constructing
enterprise input-output tables solely from marginal totals. In this respect, our method
resembles early matrix balancing methods described by Deming and Stephan (1940),
Stephan (1942), Friedlander (1961), and Bacharach (1965), and in fact, our work
makes use of the widely known RAS matrix balancing technique (Bacharach 1970).

In this paper we have applied this balancing approach to resolve the problem of
allocation of inputs to products of multi-product processing sites in the dairy indus-
try. Dairy products manufacturing requires a number of primary inputs such as raw
milk, ingredients, chemicals, energy carriers and water. Dairy manufacturing plants
usually produce more than one product as the fat content in raw milk usually exceeds
the required fat content of milk powders, cheeses or fresh milk products (for example,
market milk, yogurt or dairy desserts). Therefore, excess milk fat is normally further
processed into butter or anhydrous milk fat (AMF). The primary input raw milk is
also transformed into intermediate products such as lactose and whey, which may in
turn be transformed into other intermediate products. Finally, a number of outputs
emerge, such as milk, butter, cheese, and cream, but small fractions of substance also
end up in solid waste and waste water. Dairy manufacturing plants consequently pro-
duce a wide variety of products, but resource use or emissions data are typically only
available on a whole-of-factory basis. Data collection for each unit process within
the plant is resource-intensive, and there is typically insufficient metering to collect
the required information. In addition, many of the unit processes are shared for pro-
ducing different products (for example, pasteurization/separation or spray drying).
Such aggregation of data poses problems when undertaking the Life Cycle Assess-
ment (LCA) for a selected product within a multi-product setting. To compare the
life cycle of one dairy product to another, therefore, requires determination of the
material consumption and process energy (electricity and fuel) demand in addition to
emissions from a plant for each product.

In short, dairy products manufacturing represents an input-output system of inter-
dependent sectors. Whereas in an economic system the sectors are industries that are
interconnected by money transactions measured in currency units, in our dairy prod-
ucts manufacturing system the sectors are substances that are interconnected through
mass flows measured in mass units.

The aim of our study is to compile a representative enterprise input-output table
for the New Zealand dairy products industry. To this end, we construct input-output
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Table 1 Hypothetical enterprise input-output table (thin frame), including a qualitative prior for interme-
diate mass flows (bold frame) and primary and final mass flows (thin frame), as well as marginal row and
column sums (total inputs and outputs), for a dairy manufacturing site

Outputs

Intermediate Final Total

Inputs

0 1 0 0 0 5

Intermediate 0 0 1 1 0 45

0 1 0 0 1 50

Primary
1 0 1 0 0 15

1 0 1 0 1 85

Total 5 45 50 25 75

tables for all 22 dairy manufacturing enterprises owned by Fonterra in New Zealand
from (a) a qualitative prior matrix, and (b) data on total inputs and outputs of products.
The qualitative prior is a binary matrix with entries initially set to one where an input
may be required to produce an output, and zero where this is not the case. As the
raw data, these tables are expressed in mass units, and therefore, a mass balance
has to be imposed on the whole enterprise system. This requirement forms the basis
for applying the RAS matrix balancing approach. The resulting 22 enterprise input-
output tables are aggregated into one table representative for the entire industry. In
order to ascertain the quality of this enterprise table, we examine the level of variance
in input-output coefficients across all single manufacturing sites. As a further test
of quality, we aggregate our micro-level coefficients so that we can compare them
(a) with macro-level data from input-output tables, and (b) with a bottom-up process-
type life-cycle assessment of a dairy processing system (Feitz et al. 2007).

We first explain our methodology and then our data sources in the following two
sections. Thereafter, we present our results and conclude.

3 Methodology

We construct an enterprise input-output table in physical units of mass flow for each
of the 22 manufacturing sites (schematic in Table 1). We define primary inputs as
those inputs that are not supplied by any of the dairy manufacturing sites. Primary in-
puts (such as raw milk) are used to produce both intermediate outputs (such as whey)
and final outputs (such as cheese). We define intermediate inputs as those inputs that
are supplied within the dairy manufacturing system. Like primary inputs, intermedi-
ate inputs (such as whey) are also used to produce both intermediate outputs (such as
whey) and final outputs (such as cheese). Finally, we define intermediate outputs as
those outputs that are used again as inputs to produce other outputs, and final outputs
as those outputs that end with the consumer and do not enter the production system
again.

In a sense, the above definitions are reminiscent of definitions for the components
of monetary input-output tables such as value added, intermediate demand and final
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Table 2 Hypothetical enterprise input-output table with a scaled qualitative prior

Outputs

Intermediate Final Total

Inputs

0 20 0 0 0 20

Intermediate 0 0 20 20 0 40

0 20 0 0 20 40

Primary
20 0 20 0 0 40

20 0 20 0 20 60

Total 40 40 60 20 40

demand, and in fact, the concept of mass flow in physical input-output tables is not
fundamentally different from the concept of circulating money in an economy. As
with monetary input-output tables, all intermediate outputs are also intermediate in-
puts, if not in practice then in principle, and hence our intermediate mass flow matrix
is square and symmetrical.

As mentioned in the introduction, we construct the 22 enterprise input-output ta-
bles based only on two sets of data: (a) a qualitative prior matrix, and (b) data on total
inputs and outputs of products. Table 1 lists hypothetical total inputs and outputs in
the bottom row and right-hand column. Totals of intermediate inputs and outputs are
equal, because we assume matter cannot be lost anywhere in the system. Totals for
primary inputs must not equal those for final outputs, because primary inputs are be-
ing transformed by the system into outputs, and final outputs are being produced by
the system from transformed inputs. However, the total across all primary inputs is
equal to the total across all final outputs, once again because matter cannot be lost.
The qualitative prior in Table 1 (thin frame) is a binary matrix with entries set to 1
where an input may be required to produce an output, and 0 where this is not the case.
The identity of 0s and 1s is determined solely on the basis of engineering knowledge.
Such a qualitative prior is useful for fixing the input structure in cases where informa-
tion on intermediate flows is completely absent (see Table 3.30 in Müller (2006) for
an example of applying the qualitative prior method to the construction of SAMs).

The construction of the enterprise tables now proceeds in two steps. First, the
qualitative prior is scaled so that the sum of all elements equals total mass turnover of
the establishment. In our hypothetical example, the qualitative prior will be multiplied
by 200/10 = 20 in order to scale the binary-element total from 10 to the prescribed
input and output total of 200 (Table 2). Note that this scaled prior does not balance,
that is, row and column sums for intermediate products are not equal as required.
This is a common situation encountered by virtually every researcher faced with the
task of constructing input-output tables.

Therefore, the second (RAS) algorithm (Bacharach 1965) is used to balance the
scaled prior in order to achieve row and column sum equality. In essence, the exoge-
nously given marginal row and column sums act as constraints on the solution of the
RAS algorithm. Together with the scaled prior, they constitute all necessary ingredi-
ents for RAS to determine a balanced enterprise input-output table that satisfies all
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Table 3 Hypothetical, fully balanced enterprise input-output table for a dairy manufacturing site

Outputs

Intermediate Final Total

Inputs

0 5 0 0 0 5

Intermediate 0 0 20 25 0 45

0 40 0 0 10 50

Primary 0 0 15 0 0 15

5 0 15 0 65 85

Total 5 45 50 25 75

constraints whilst preserving the structure of the scaled prior as much as possible.
The fully balanced version of our hypothetical enterprise table is shown in Table 3.

The shaded element is the one where primary input 1 could have been used in
principle, but appears not to have been used in practice, for producing intermediate
output 1. This serves to show the utility of RAS to derive solely from data on totals,
and a mass-balance condition, how inputs are best allocated across co-products in a
complex production system.

4 Analysis

We undertake a number of diagnostic analyzes on the 22 enterprise tables constructed
as described in the previous section. Let Ts be the balanced enterprise input-output
tables for the s = 1, . . . ,22 sites. In order to control the different sizes of manufac-
turing sites, we calculate input-output coefficients according to As = Ts x̂s

−1, where
x̂s denotes the diagonalization of a vector xs = Ts1′ containing gross substance out-
put of manufacturing site s,1 = {1, . . . ,1} is a summation operator, and the prime ′
denotes transposition. In input-output economics parlance, A is called a direct re-
quirements matrix. It is commonly referred to as the production recipe, because it is
independent of production scale.

In order to fulfill our main aim, a representative enterprise input-output table for
the New Zealand dairy products industry, we derive a combined table A by taking a
weighted averageA∗ = �swsAs over all 22 enterprises, where ws = xs/�rxr , and xs

is total mass turnover of enterprise s. As a result, enterprises influence the weighted
average according to their size. In addition we calculate relative and absolute standard
errors for each element of A∗.

Finally, we use A∗ in order to calculate the classical Leontief inverse L = (I −
A∗)−1, where I is an identity matrix with the same dimensions as A∗. The elements
Lij of L then represent the total (direct and indirect) mass requirement of substance
i to produce substance j .

In order to enable the comparison with Feitz et al. (2007), we require an addi-
tional normalization step; we write the elements of a normalized Leontief inverse as
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Ln,ij = Lij /Li,milkpowder. This unusual way of normalization was chosen by repre-
sentatives of the Australian Dairy Processing Industry because the preference was to
release relative figures rather than absolute figures. Therefore, results were reported
in relation to the reference product milk powder.

5 Data sources

To achieve our stated aims, we first collected data in mass and energy units on all
intermediate and primary inputs, and on intermediate and final outputs for the man-
ufacturing sites. Before starting with the onsite data collection we developed a ques-
tionnaire, asking for information on throughputs of various inputs and outputs. The
questionnaire lists, for example, intermediate outputs such as AMF, cheese whey, ca-
sein fines (43 in total). These intermediate outputs are identical with the intermediate
inputs. Primary inputs asked for (52 in total) are, for example, ingredients (such as
salt), chemical usage (caustic, nitric acid, triplex sodium hypochlorite), energy (elec-
tricity usage, thermal energy consumption from black coal, lignite, gas, oil, LPG and
biogas, cogenerated steam and waste heat), packaging (for example, kraft liner, card-
board, polypropylene, steel drums, nitrogen and carbon dioxide usage), refrigerant
use (R22 and ammonia), and town water usage. Final outputs asked for (29 in total)
are milk powders (skim and whole milk powder, butter milk powder, nutritionals, spe-
cialty powders, different types of MPC), cheese (dry salt and brine salt cheese, mozz
type cheese and cream cheese), fat products (butter, fat blend), casein-based products
(casein and caseinate) and whey products (whey powder, whey protein concentrate,
whey fractions, lactose, lactalbumin, alamin and ethanol). Final outputs also include
milk solids to waste, wastewater discharged to sewer and solid waste.

The data collection was predominantly done by site visits. Relevant data were
extracted from onsite meters, data management systems (for example, SAP, Excel)
and financial accounts (for example, expenditure data allow backtracking to mass
and energy flows). Obtaining high-quality data is challenging as the majority of the
mass and energy flows are captured only on a whole-of-plant basis, for example,
thermal and electrical energy consumption and town water demand are usually not
measured for separate processing steps. However, there are also mass inputs that can
be allocated directly (in the qualitative prior) to specific products, for example, salt to
cheese, or low density polypropylene for packing cheese. An additional challenge is
caused by the intermediate product transfers between sites. There is a large variation
of these product transfers among individual sites, while the overall amount of product
transfers for all sites is only ∼ 2% compared to the total quantity of final products.

Second, we set up a qualitative prior on the basis of extensive interviews with ex-
perts from the dairy industry. The qualitative prior reflects the structure of mass flow
of all inputs and outputs. In addition to the scaling described above, we also weight
the qualitative prior (with weights ranging between 0.001 and 1) in order to sup-
press some connections and emphasize others (compare with a weighting procedure
applied by Müller and Djanibekov (2009) for estimating an agricultural model).

Dairy processing is ultimately a milk solids concentration process. Therefore, we
start with identifying those intermediate and final outputs that require direct raw milk
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and whole milk as a primary input. This is straightforward for final outputs such
as butter, different types of whey products, powders, cheeses and milk concentrates,
but more complex for intermediate outputs, mainly due to the choice of intermedi-
ate product names and the variety of how processing sites manufacture their dairy
products. For raw milk and whole milk inputs, we have identified 23 intermediate
outputs in total, such as cream, homogenized milk, skim milk and whey cream. In
these cases 1 is set where an input is required to produce an output, and 0 where
this is not the case. A small fraction of milk solids enters the waste stream, that is,
wastewater discharged to sewer or municipal household waste.

Some of the primary inputs are ingredients that can be allocated directly to final
products: for example, lactose goes into milk powders, salt is used for butter, cheese
and MPC, and acetic is used for MPC. In these cases we weight the qualitative prior
elements with 0.01 because these ingredients can be expected to contribute less to
final products than to intermediate products. Direct allocation is also possible for the
majority of cleaning agents (caustic, nitric acid, triplex sodium hypochlorite), for ex-
ample, triplex being used for cleaning caseinate processing equipment. Packaging
material consists of the actual material (kraft liner, cardboard, polypropylene, steel
drums) in which the product is contained in and - in the case of powders - nitrogen
and carbon dioxide gas that is filled in the packaging material together with the prod-
uct. Paper, paper cases and LDPE are assumed to be required for all products, while
HDPE and some LDPE can be directly attributed to butter and cheese.

Energy inputs (electrical and thermal) are not subject to mass flow constraints
as all other inputs. Therefore, we used additional process information for allocating
electrical and thermal energy consumption to the final products.

Intermediate inputs are products that are required for producing intermediate and
final dairy products. In total there are 43 intermediate inputs, and in our system these
are transformed into intermediate outputs in 196 combinations. For example, AMF
is potentially used in AMF, beta serum, butter rework, colostrums cream and milk,
cream (high-fat and organic), whey AMF serum and whey cream. In addition, inter-
mediate inputs are also used for producing final products that are sold to the market;
for example, skim milk concentrate is used for MPC70, cheese dry salt and brine salt,
mozz type cheese and cream cheese.

Whilst the above description is nowhere near exhaustive in explaining the entire
qualitative prior, it serves as an illustration of the principles followed in constructing
such a prior.

6 Results

The enterprise input-output matrix A∗ for the New Zealand dairy manufacturing sys-
tem is reasonably sparse (Figure 1, left plot). This sparsity is of course pre-determined
by the non-zero entries in the qualitative prior, because the zero entries are preserved
during RAS balancing. Most of the significant elements in A∗ can be found in two
particular rows that hold milk solids (row #44) and town water (row #85), which
constitutes by far the main mass flows.

Some A∗ elements show relatively large relative standard errors of up to 400%
(Figure 1, right plot). A closer analysis shows that these large standard deviations are
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Fig. 1 Checkerboard plot of log10(A
∗
ij

) and its absolute and relative standard errors. Element magnitude
is represented by cell colors. The axes are scaled by sector numbers: rows and columns 1-43 represent in-
termediate inputs and outputs, rows 44-88 represent primary inputs, columns 44-73 represent final outputs.

Fig. 2 Relative standard errors
of input-output coefficients as a
function of their magnitude.

associated with small elements in A∗. Moreover, Figure 2 reveals an inverse relation-
ship where large elements are associated with small relative standard errors and vice
versa. For example, small standard deviations are associated with large elements in
A∗, for example, mass flows of milk solid inputs and town water inputs. This circum-
stance is well known from statistical analyzes of input-output tables (Lenzen 2000;
Lenzen et al. 2010b). It means that the proportion of small and unimportant inputs
into production processes can vary significantly between enterprises, but that the pro-
portion of large and important inputs is relatively constant. For example, the input
of nitric acid into whole milk powder fluctuates between 0.002% and 0.05% of milk
powder mass, but the input of raw milk solids into various intermediate and final dairy
products ranges only between 5% and 10% of product mass.

We then aggregated our dairy enterprise input-output table A∗ into the classifica-
tion of a part of the published monetary New Zealand (Statistics New Zealand 2011)
and Australian (ABS 2009) input-output tables, and compared the magnitude of co-
efficients. The sector breakdown of the two monetary input-output tables contains
8 sectors onto which the sectors in our enterprise table can be mapped. Whilst we
would not expect a strong similarity between physical (mass) and monetary ($) co-



Page 10 of 15 Lenzen, Lundie

Fig. 3 Comparison between
monetary and physical
input-output coefficients for
dairy products. A and ‘o’
symbols = Australia, N and ‘x’
symbols = New Zealand, Ch =
Basic chemicals, Dp = Dairy
products, Of = Other food
products, Pl = Plastic products,
Pp = Paper products, Tm =
Treated milk, Um = Untreated
milk, Wa = Water supply.

Fig. 4 Comparison between
our dairy enterprise input-output
multipliers and life-cycle
coefficients obtained by Feitz et
al. (2007). Each marker group
represents inputs into up to 9
dairy products (milk powder,
milk, cream, butter, AMF/ghee,
cheese, whey powder, UHT,
WPC/lactose) according to Feitz
et al. (x axis) and this study
(y axis). Groups including less
than 9 markers indicate that
inputs are unimportant for some
products.

efficients, the magnitudes of the relative proportions of inputs agree reasonably well
(Figure 3). Areas above the diagonal indicate inputs that are more important in phys-
ical terms than in monetary terms, and vice versa for the area below the diagonal. Of
course, water supply deviates most strongly from the diagonal, but also basic chem-
icals are an order of magnitude less expensive for their mass than other inputs. On
the other hand, plastic products affect inputs more financially than physically. Inter-
estingly, Australian and New Zealand monetary input coefficients agree reasonably
well, except for the monetary input of paper products into dairy manufacturing, which
appears to be much smaller in New Zealand than in Australia.

Finally, we compare our normalized Leontief multipliers Ln with the life-cycle co-
efficients obtained by Feitz et al. (2007) (Figure 4). In Feitz et al. an industry-specific
allocation matrix was developed for the dairy manufacturing industry to enable bet-
ter allocation of resources to dairy products given whole-of-plant information. The
allocation matrix was the product of an extensive process to determine average re-
source use and wastewater emissions for individual dairy products (for example, kL
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of water per tonne of yogurt) from 17 multi-product manufacturing plants with a sim-
ilar processing technology. The process involved using initial literature and company
estimates for resource efficiency per product (for example, GJ of electricity/tonne
of milk powder), normalizing the resource efficiency figures for all products to milk
powder, and producing a matrix of life-cycle resource efficiency coefficients.

We observe some deviations from equality (represented by the diagonal in Fig-
ure 4); however, these deviations are almost all smaller than half an order or magni-
tude, and hence comparable to variations within our sample of dairy manufacturing
firms (compare with Figure 2). Considering that the study by Feitz et al. and our study
deal with entirely different sets of firms, the agreement between the two is reasonable
enough to demonstrate that our results are in the right ballpark. This is especially
because this comparison is in terms of aggregates of products (cheese, milk, etc.),
which are likely to differ between this study and the one by Feitz et al.

7 Conclusions

We have described an efficient method for estimating enterprise input-output tables
for cases when only information on marginal totals is available. In order to fix the
production structure of enterprises, we utilize engineering knowledge to construct a
qualitative prior containing 1 wherever an output may require an input, and 0 other-
wise. Mass flow balance is accomplished by balancing a scaled prior using the RAS
matrix balancing method.

We have demonstrated the usefulness of this method in an application to dairy
product manufacturing in New Zealand, where we estimate input-output tables in
mass units for 22 dairy manufacturing enterprises.

We encountered only one problem where improvements could be made in future
applications. The water mass balances of most sites have been problematic: while the
water content of primary input raw milk was always well known, there were discrep-
ancies in metering information for incoming town water and discharged wastewater
resulting in inconsistencies of mass balances for many sites. Since town water is
such a significant input in mass terms, these discrepancies distorted the adjustment
of smaller mass flows of other substances. In the future we recommend paying par-
ticular attention to obtaining quality data for important mass flows. In addition, we
recommend treating the input of water on a net basis, that is, to exclude all once-
through water uses such as for washing equipment and to include only water that is
associated with substance transformations.

Having qualified our results, we nevertheless conclude that in contrast to bottom-
up methods such as process analysis much labor, time and money can be saved by em-
ploying marginal totals, a qualitative prior, and any matrix balancing method. How-
ever, interdisciplinary expert judgment is needed to set up the quality prior and the
matrix balancing method and to account for the uniqueness of dairy processing sites.
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Appendix: List of inputs and outputs

A.1 Intermediate inputs and outputs

1. AMF

2. Beta serum

3. Butter rework

4. Buttermilk

5. Casein fines

6. Cheese whey

7. Cheese whey concentrate

8. Cheese whey retentate

9. Colostrum Cream

10. Colostrum milk

11. Colostrum permeate

12. Cream

13. Cream fima

14. Cream hi fat

15. Dilute milk permeate

16. Evap milk perm 30%

17. Evap milk perm 45%

18. High fat whey retentate

19. Homog milk

20. Imported Lactose

21. Ion exchange whey

22. Lactalb slurry

23. Lactic whey

24. Lactose slurry

25. Milk perm 18%

26. Mineral acid whey

27. Nano filtered whey

28. Organic Cream

29. Permeate

30. Reconstituted lactose

31. Retentate concentrate

32. Retentate concentrate_Gen

33. RO Milk

34. Secondary skim milk

35. Skim milk

36. Skim milk concentrate

37. Skim milk retentate

38. Whey

39. Whey AMF serum

40. Whey cream

41. Whey permeate

42. Whey protein retentate

43. Whey_2

A.2 Primary inputs

1. Total MS from raw and
whole milk

2. Milk concentrate

3. Proliq

4. Lactose only milk powder

5. Ingredients milk powder

6. Salt butter

7. Salt cheese

8. Salt MPC

9. Acetic acid MPC

10. Calcicum hydroxide
caseinate

11. Sodiuim hydroxide
caseinate

12. Sulphuric acid caseinate

13. Caustic milk treatment

14. Nitric acid milk treatment

15. Triplex milk treatment

16. Sodium hypochlorite milk
treatment

17. Caustic demin

18. Nitric acid demin

19. Sodium hypochlorite
demin

20. Caustic butter

21. Nitric acid butter

22. Sodium hypochlorite butter

23. Caustic milk powder

24. Nitric acid milk powder

25. Sodium hypochlorite milk
powder

26. Caustic MPC42-85

27. Triplex MPC42-85

28. Sodium hypochlorite
MPC42-85

29. Caustic dry salt cheese

30. Nitric acid dry salt cheese

31. Triplex dry salt cheese

32. Sodium hypochlorite dry salt
cheese

33. Caustic caseinate

34. Triplex caseinate

35. Sodium hypochlorite caseinate

36. Caustic lactose

37. Nitric acid lactose

38. Triplex lactose

39. Sodium hypochlorite lactose

40. Nitrogen usage

41. Carbon usage

42. Town water usage

43. Paper cases

44. LDPE

45. Paper
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A.3 Final outputs

1. Butter

2. Fat Blend

3. Skim milk powder

4. Whole milk powder

5. Butter milk powder

6. Nutritionals

7. Specialty Powders

8. MPC42

9. MPC56

10. MPC70

11. MPC 85

12. Cheese (dry salt)

13. Cheese (brine salt)

14. Mozz type cheese

15. Cream Cheese

16. Casein

17. Caseinate

18. Whey powder

19. WPC

20. Whey fractions

21. Lactose

22. Lactalbumin

23. Alamin

24. Ethanol

25. Milk concentrate

26. Proliq

27. Milk solids to waste

28. Wastewater discharged to sewer

29. HSW waste (trucked)
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