
A modular bottom‑up approach 
for constructing physical input–output tables 
(PIOTs) based on process engineering models
Liz Wachs1 and Shweta Singh1,2* 

1 � Introduction and motivation
Physical input–output tables (PIOTs) provide a key decision-making framework for 
optimizing material utilization while reducing the environmental impacts associ-
ated with production in the economy. As the need for accurate accounting for material 
flows became evident in the 1990s, PIOTs were conceived of as a way of integrating the 
strengths of Input–Output (IO) modeling with material flow analysis (MFA). The PIOT 
structure is derived from Economic Input–Output (EIO) models, but intersectoral flows 
are captured in physical units rather than monetary units. The first PIOTs were devel-
oped in the 1990s (Gravgaard-Pedersen 1999; Konijn et al. 1997; Hoekstra and van den 
Bergh 2006; Hoekstra 2010) and demonstrated the utility of PIOTs as a tool for analyzing 
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the physical interdependency between economic sectors as well as the interactions of the 
economy with the environment. While several researchers have highlighted the poten-
tial for PIOTs for material tracking and benefits of inclusion of more IO data in physical 
units (Altimiras-Martin 2014; Hubacek and Giljum 2003; Hoekstra and van den Bergh 
2006; Duchin and Levine 2011; Merciai and Heijungs 2014), their adoption and develop-
ment have lagged compared to material flow analysis (MFA) (Hoekstra 2010), Life Cycle 
Assessment (LCA), and Environmentally Extended Input–Output (EEIO) analysis. The 
slow adoption of PIOTs is attributed to high compilation costs, lack of physical data at 
the appropriate aggregation levels, lack of reproducibility and continuity in available 
datasets along with limited applications demonstrating the use of PIOT (Hoekstra 2010). 
However, the limited applications are a consequence of the limited number of PIOTs 
available leading to a negative feedback cycle of lag in PIOT development.

An early use of PIOTs for measuring the ecological footprint of trade was noted by 
Hubacek and Giljum (Hubacek and Giljum 2003). PIOTs provide unique insights into 
the physical structure of the economy (Altimiras-Martin 2014), which differs from the 
economic structure since monetary input–output tables (MIOTs) record the flows of 
goods and services according to their economic values, not their physical mass (Hoek-
stra and van den Bergh 2006). Thus, PIOTs can also provide insights toward a trans-
parent transition to the circular economy. Recent emphasis on the food–energy–water 
nexus further highlights the need to integrate physical data with consumption patterns 
at a subnational level, which PIOTs are uniquely suited to do (Wachs and Singh 2017). 
Additionally, elemental cycles in the economy using PIOTs (Hoekstra and van den Bergh 
2006) are important for studies of dematerialization and movements of critical materials. 
In this vein, Singh et al. have created a first regional PIOT to demonstrate the nitrogen 
(N) cycle in the economy of Illinois due to the important role of N in food and energy 
provision and its significant environmental impacts such as eutrophication (Singh et al. 
2017). Physical transaction matrices for sectors with material outputs provide the best 
basis for future projections (Weisz and Duchin 2006). Furthermore, the incorporation 
of flows to nature, intrinsic to PIOTs, is key for environmental analysis regarding waste 
management (Dietzenbacher et  al. 2009). Therefore, interest in developing PIOTs has 
continued (despite the lack of a standardized approach) and multiple PIOTs have been 
developed using empirical or IO-based approaches as follows.

Currently, four approaches exist that can facilitate the construction of PIOTs or mixed 
unit IO tables: unit physical input–output by materials (UPIOM) (Nakamura et al. 2011), 
the approach for developing hybrid supply and use tables (HSUTs) in EXIOBASE (Mer-
ciai and Schmidt 2018), hybrid LCA/IO approaches (Lindner and Guan 2014) and an 
RAS-based approach (Fry et al. 2016). In UPIOM, a highly disaggregated MIOT is used 
to derive the unit structure, that is, a binary matrix for each sector depicting whether 
or not it is related by intersectoral flows to other sectors. Another binary matrix shows 
whether the monetary relationship corresponds to a physical relationship. A yield matrix 
indicates the proportion of the starting material that becomes product versus waste. The 
transformed matrix is then classified into resources, materials and products. (In their 
terminology, resources are used to produce materials which in turn are used to make 
products.) In the USA, UPIOM has been employed to study metals at a detailed national 
level (Chen et al. 2016; Nuss et al. 2016).



Page 3 of 24Wachs and Singh ﻿Economic Structures  (2018) 7:26 

Recently, UPIOM was integrated into the pioneering work in building HSUTs for 
EXIOBASE (Merciai and Schmidt 2018). In this approach, rather than calculating tech-
nical coefficients exclusively from existing monetary IO tables and converting via price, 
coefficients are primarily taken from life cycle inventory (LCI) data and literature, thus 
overcoming the need for highly disaggregated MIOTs as a basis. Yield factors (called 
transfer or transformation coefficients) specific to each material and total materials are 
calculated. An initial estimate of supply and use tables (SUTs) is generated by a multistep 
approach involving empirical data, the technical and yield coefficients, minimum mate-
rial requirements and a trade module to estimate sufficient supply. These SUTs are then 
constrained to ensure mass balance when technical and transformation coefficients are 
readjusted. The trade module uses this information to build the multiregional HSUTs. 
This method is comprehensive, however depends on the quality of data available from 
LCIs which in turn face challenges of validation, representativeness and future adapta-
tion for changing technologies.

Another common approach for building PIOTs incorporates LCA data for individual 
sectors, similar to the tiered hybrid LCA approach (Crawford et al. 2018; Suh et al. 2004), 
where a subset of sectors is modeled with LCA and EIO data fills in for the rest. Never-
theless, the LCA data in physical units are often used to generate a new IOT in the IO-
based hybrid LCA method (Malik et al. 2014; Wolfram et al. 2016; Teh et al. 2017). This 
approach offers good precision, validation, and comprehensive mass flows and environ-
mental impacts. Yet, the opacity of the LCA datasets limits reproducibility, continuity 
and usefulness in long-term decision-making.

A final approach has recently been adopted in Australia to create a time series of 
PIOTs (Fry et al. 2016), using a variety of approximation techniques to fill in data gaps, 
notably a RAS technique applied sequentially. It requires a strong initial basis for the 
data tables, which is not yet available at the subnational level, thereby limiting the appli-
cation of this approach.

While significant advances have been made toward PIOT compilation methodolo-
gies, existing challenges for adoption of these methods include: lack of disaggregated IO 
tables for UPIOM approach, coverage gaps and opacity in LCA datasets, LCI data qual-
ity challenges (unmet thermodynamic balances) and limited updates. Gaps for subna-
tional PIOT construction are even larger. Thus, a critical need remains for methods that 
allow reproducibility, transparency and continuity, so that PIOTs can be widely utilized 
in decision-making. This was also alluded to in work on the future of IO analysis, where 
Dietzenbacher hypothesized a world MRIO in physical units, linked to engineering and 
GIS data (Dietzenbacher et al. 2013).

The main contribution of this paper is in proposing a bottom-up approach for con-
structing PIOTs that combine the strength of process engineering models with the IO 
framework. This approach is suitable for automation and allows for continuity of data-
sets at multiple scales to rapidly generate PIOTs. This method can also be integrated 
with existing approaches to improve process data used in technical coefficients. Since, 
the method utilizes a detailed technology model, PIOTs created with this method can be 
updated faster to reflect technology changes in the economy as envisioned by the rectan-
gular choice-of-technology (RCOT) method (Duchin and Levine 2011). Specifically, the 
proposed method brings the following advantages over the process LCA-based PIOT 
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generation: (1) Process modeling is a transparent methodology where model parameters 
and unit operations can be seen and adjusted, allowing easy updates and automation; 
(2) process modeling via the software (Aspen Plus) used here respects the laws of ther-
modynamics, a challenge in life cycle inventories that needs correction such as via data 
reconciliation (Yi and Bakshi 2007; Singh et  al. 2008; Hau et  al. 2008), which is rarely 
done and (3) process models detail the mechanisms of transformation occurring in each 
operation of a production system, rather than relying only on empirical documentation 
for coefficient calculation. Since process model results are used here mainly to gener-
ate technical and yield coefficients, this approach can be integrated with comprehensive 
methodologies such as UPIOM and EXIOBASE, and may allow for improvements in the 
databases used for calculating physical transactions matrices in existing approaches.

The rest of the paper is organized as follows: Sect. 2 describes the proposed methodol-
ogy. Section 3 demonstrates the methodology to generate a 6-sector nitrogen PIOT for 
Illinois. In Sect. 4, we compare the PIOT generated in this work with a previously devel-
oped N PIOT (Singh et al. 2017) as a validation of the proposed approach along with dis-
cussing advantages, challenges and limitations of the approach. Section 5 concludes and 
details opportunities for future work and standardization of PIOT development.

2 � Proposed method for PIOT construction using process engineering models
A PIOT provides a representation of physical intersectoral transactions within the 
economy and between natural systems and the economy. Flows of raw materials (from 
nature) provide information on the dependence on natural systems for physical resource 
requirements, whereas wastes and emissions quantify impact. The final demand matrix 
captures the consumption of products. These flows form the basic inputs for construc-
tion of PIOTs.

In this work, we utilize the strength of process engineering models to capture regional 
production, providing a reliable estimation of domestic supply of products, domestic 
consumption of intermediate products, raw materials, co-products and waste streams. 
The proposed method is a bottom-up modular approach that connects the flows associ-
ated with individual industrial systems in a region to build the PIOTs by linking them to 
the economic sectors designated by the system of national accounts.

After the initial sector selection, the first step in our method (Fig.  1) is construct-
ing process engineering models representing sectoral technology, while empirical data 
related to model flows are gathered. Mapping is done between the model flows and pro-
ducing or purchasing sectors (in accordance with the North American Industry Classi-
fication System, NAICS). In the second stage, models are scaled up and run to generate 
regional flows that are aggregated into a PIOT based on regional technical coefficients 
(RTCs). The final stage allows us to create a regional IO model based on regional input 
coefficients (RICs) by applying assumptions about imports or exports as per data avail-
ability. We next discuss this regional PIOT structure followed by an explanation of PIOT 
construction from information obtained through the proposed approach.

2.1 � Regional input–output models

Regional (subnational) IO models are important due to the heterogeneity in products 
and production approaches for the same sectors in different regions. These can be 
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constructed by utilizing surveys to identify the production recipes of firms in a region 
(Miller and Blair 2009). Two matrix types can be used in regional IO models: RTCs and 
RICs. RTCs provide information about the production practices of a sector in a region, 
i.e., the total inputs used by a sector in the region for producing outputs. RICs on the 
other hand provide information about the inputs to a sector only from firms within the 
same region. It is to be noted that RICs will not capture the whole production technol-
ogy for the sector if some of the inputs to the sector in a region are not being produced 
in the region. Hence, to fully understand the production of a sector, RTCs and RICs must 
be evaluated together. The model based on RICs is similar to the standard IO model with 
the coefficients replaced by arrij  representing the input from sector i to sector j flowing 
within the region r. It is calculated as arrij =

zrrij
xrj

 where zrrij  is the physical flow from sector i 

to sector j within region r and xrj  is the total output of sector j.1 Using this model, total 
regional impact of a final demand change yr in the region would be given as:

Thus, RICs allow in computing expected regional impact to support a final demand, 
while RTC can allow to compute total expected impact (both inside and outside region) 
to support a final demand from sectors within the region. However, a survey-based con-
struction of RTCs and RICs would be costly, time-consuming and faces the challenge of 

(1)xr =
(

I− Arr
)−1

yr

Fig. 1  Overview of the approach and methodology for building regional PIOTs from process models and 
empirical data. Step 1 is described in depth in Sect. 2.1.1, step 2 in Sect. 2.1.2 and step 3 in Sect. 2.3

1  We have borrowed the following notation rules from Miller and Blair and follow them in this text: matrix and 
vector indices are lower case italics, matrices are upper case bold, vectors are lower case bold, and row vectors are 
denoted with an apostrophe. Generally, for both total output (x) and final demand (f) the superscript r can be omit-
ted without changing the value, but it is used in this section to show the regional specificity. Note that f is the sum of 
consumption by households and net exports.
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continuity and reproducibility. The proposed approach in this work overcomes some of 
these challenges by providing a method to estimate the RTCs and RICs utilizing infor-
mation from process engineering models, empirical data and scenarios based on addi-
tional exogenous data available with greater reliability.

2.1.1 � Process models to regional input–output models

As the proposed approach is a bottom-up approach (Fig.  1), it begins with selecting 
the sectors to be modeled. If the focus of the PIOT is a specific material or element, 
the choice can be informed by flowcharts based on MFA, which provides the subset 
of sectors for which physical data are most relevant. MFA is not a prerequisite for this 
approach, since modelers can also select sectors based on their knowledge of a regional 
economy.

In Step 1, technology used for production is identified and process models are devel-
oped to capture production mechanisms. Since process engineering models are based on 
mechanistic information that captures the physical and chemical relationships for pro-
duction, the knowledge about production, scalability and continuity are improved here 
over empirical methods. An initial model represents an average technology producing a 
single output type or linked output types (such as corn wet milling which has several co-
products). In the case of multiple technologies being used in a region for production of 
the same product, this method can include process models for variations in the produc-
tion method combined with the specific production capacity for each technology. Simul-
taneously, data for scaling up (such as production capacity and utilization of capacity in 
an economy) process models is collected which allows to calculate total sectoral activity 
in a region. For agricultural sectors, the empirical data required is the true production 
values (P) which are tracked in the USDA NASS census (Additional file 1: Table A10). 
For industrial sectors, the total processing capacity (C) in the state is used here. The US 
Census Bureau (US Census Bureau 2005) provides a disaggregated survey of sectoral 
capacity utilization (U). Therefore, the scaling factor, S, is either assumed to be equiva-
lent to the true production numbers (P) or calculated according to Eq. 2:

Hence, scaled process models provide values of production and consumption of inter-
mediate products for the sectors being modeled. Since the process models capture all 
input requirements, scaling up these models to represent total regional production pro-
vides information to calculate the RTCs for sectors modeled in the region as described 
further in Sect.  2.1.2. Additionally, scaling up these process models provides “supply” 
and “use” side physical flow information. As models are built, element and compound 
level data are collected about flows entering the production process, allowing us to trace 
the linkages to their respective production sectors. Each input is thus mapped either to 
its production sector, the “rest of the economy” or to raw materials. Likewise, product 
streams are mapped either to residuals or as saleable product streams. This mapping can 
be stored for automation in future, providing a major advantage for reproducibility and 
continuity of PIOTs. Data on consumption by households within the region, imports 
and exports are exogenous information required to allow full construction of regional 
PIOTs.

(2)S = C ×U
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2.1.2 � Regional technical coefficients (RTCs) from process models

Physical flow information obtained from running the scaled process models provides the 
basis for RTCs. Since models reflect production recipes, no distinction can usually be 
made about the proportion of domestic or imported factors as shown in Eq. 3.2 Flows 
from sector i to sector j can originate within the region being modeled ( zrrij  ) or outside 
the region ( zsrij ),3 we capture zij , the sum of both, from process models:

Figure  2 shows the system boundary for a regional economy and flows for a mod-
eled sector A. Inputs to sector A come from nature ( wA ) and other sectoral production 
zBA, zNA . Flows entering our models are captured at the point of entry; thus, raw materi-
als from nature can be obtained from regional extraction ( wR

A ) or imported from other 
regions ( wS

A ), but the models estimate only wA . Inputs from other sectors are domestic 
( zrrBA, z

rr
NA) or from outside the region ( zsrBA, z

sr
NA ). If the focus is on single-region models, 

zsrBA, z
sr
NA is equivalent to imports by respective sectors mBA , mNA . Likewise, products can 

be sold to other domestic sectors ( zrrAB, z
rr
AN ) or outside regions ( zrsAB, z

rs
AN ) . Products can 

also be consumed by households ( cA ) in the same region. All flows from sector A to the 
exterior can be grouped as exports ( ̄eA ) for a single-region model. All wastes are grouped 
as residuals ( rA ) for simplicity. In some cases, sectors rely on their own products for pro-
duction ( zAA ). The dotted flow arrow represents flows to and from stocks ( sA ), which 
represent the flow outside of the temporal boundary, both what is left as inventory at 
the end of the time period, or what was left over from past time periods. We assume 
a closed temporal boundary here, and hence, stock flows are zero. Total flows into the 

(3)zij = zrrij + zsrij

Fig. 2  Flows between a single production sector A and the rest of the economy. Flows to and from stocks 
are shown with a dotted line. The temporal and regional boundaries are dashed boxes. Incoming flows 
to sector A are red, while outgoing flows are blue. The self-flow is shown as purple. Note that in the figure 
x
r ,outputs
A

= z
rr

AA
+ z

rr

AB
+ z

rr

AN
+ cA + ēA ; x

r ,inputs
A

= zAA + zBA + zNA + wA − rA and xr ,outputs
A

= x
r ,inputs
A

2  With the exception of noncompetitive imports, so the case where we know the product is not produced domesti-
cally.
3  We assume a single-region model for simplicity, with s corresponding to the rest of the world as in Miller and Blair 
(2009). In this case, all imports come from region s.
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sector must be equal to total flows out, designated as xr,inputsA  and xr,outputsA  (equivalent to 
xrA and xA).

As Fig. 2 shows, flows from process models ( zij , wA , rA , xr,inputsA  ) provide the input 
side information necessary to fill the PIOT. The next step of mapping flows from pro-
cess models to the PIOT structure is demonstrated in Fig. 3 by considering a single 
sector—ammonia fertilizer manufacturing—as our sector A. The left side of Fig.  3 
provides a simplified diagram showing a process simulation model already scaled to 
the size of economic production from information on production capacity (C) and 
utilization (U). The model includes stream flows (numbered from 1 to 14, A1–A2 in 
Fig. 3), as well as unit operations where transformations and state changes occur. In 
the process depicted, natural gas is used as the feedstock for the production via steam 
reformation of hydrogen, which reacts with air to form ammonia in the Haber–Bosch 
process. Thus, the model results provide flow information on raw material consumed 
( wA , stream 3), products as feedstocks ( ziA , streams 1 and 2), auxiliary inputs ( ziA , 
stream A1), waste generation ( rA , streams 8, A2, and 14), recycling (stream 15), prod-
ucts (stream 13) and co-products. (None are shown in the example, but in some cases 
the CO2 stream shown in stream 8 will be divided into a co-product stream.)

In Fig. 3, the flow from stream 1 is water, sector B, and the total steam per year is 
entered as zBA . Likewise, natural gas is used in input streams A1 and 2, so they are 
summed to provide the entry for zCA (in Fig. 2, sector C is aggregated into N). Air is 
a flow from nature, so here stream 3’s total input is used as the entry for wA . Three 
residual streams are present: a purge stream (14) consists primarily of air and water 
vapor, an exhaust stream from the heat exchanger (A2) has combustion byproducts, 
and waste CO2 exits in (8). Those three streams are added together in the rA cell.

Fig. 3  To the left, a simplified diagram of an ammonia production process model is shown. All primary flow 
streams are labeled in black circles. Auxiliary streams are numbered in gray circles. Streams are mapped to 
the PIOT framework at right, following the arrows. Stream numbers included in the categories are shown in 
the PIOT. This is an example of a single sector A, outputs of other sectors in this sample economy are shaded. 
As referred to in the text, the process information fills the column for the given sector. The IO identity that 
x
r ,outputs
A

= x
r ,inputs
A

 is used to fill the total output column
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As other sectors are modeled, information for each column is obtained to build the 
PIOT. The total input to each sector is then calculated as the column sum using Eq. 4 
from these known flows (Giljum and Hubacek 2009).

This corresponds to a treatment of residuals equivalent to that of Suh (2004) and dis-
cussed extensively on treatment of residuals for construction of PIOT in Pauliuk et al. 
(2015a, b). Since zij and xj are known from the process model information, RTCs for the 
regional economy can be easily calculated:

To build the whole PIOT, final demand must also be known, including consumption by 
households cA (in EIO, this typically includes consumption by government and investors 
as well) as well as net exports, eA . Since total mass output from sector A ( xr,outputsA ), is 
known from process modeling, the market balance, the row sum for sector A, is shown 
in Eq. 6:

This equation can be rearranged to Eq. 7, which puts the variables known from process 
models (once all models are run) on the right-hand side:

At this point, empirical data are necessary to fill in the left-hand side in Eq.  7. The 
strength of this method is that since Eqs. 6 and 7 have only two degrees of freedom,
cA and eA, , they can be used to approximate an initial PIOT based on RTCs when data 

are available only on consumption or net exports. To list imports and exports separately, 
note that Eq. 7 is equivalent to:

Ideally, data on domestic consumption, imports and exports should be available, and 
the balance in Eq.  8 agrees. At the subnational scale, however, information on these 
flows is frequently lacking, so assumptions may need to be made (Sect. 2.2). It is also 
possible that the equality in Eq. 8 does not hold after values are found for cA,mA and ēA , 
i.e., when Eq. 8 is overspecified. In this case, non-survey approaches such as RAS can be 
used to balance the matrix. Defining the best strategy for this situation is left to future 
work since our focus is on regional PIOTs, which are typically constrained by a lack of 

(4)
m
∑

i=1

ziA + wA − rA = x
r,inputs
A

(5)aij =
zij

xj

(6)x
r,outputs
A =

m
∑

j=1

zAj + cA + eA

(7)cA + eA = x
r,outputs
A −

m
∑

j=1

zAj

(8)cA + ēA −mA = x
r,outputs
A −

m
∑

j=1

zAj
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information on intersectoral flows rather than conflicting information, for which many 
approaches have been used in the IOA literature.

This section has described the derivation of a PIOT based on RTCs. Building RICs 
from RTCs requires information on imports, which we can address by scenarios, as 
detailed in Sect. 2.2. Next, the compatibility of this approach with the supply and use 
framework is explained, which also assists in obtaining additional information for sce-
narios used to build RICs.

2.2 � Physical supply and use tables (PSUTs) from process models

The scale up of process models also provides the supply table and the use table in phys-
ical units (see Tables  1 and 2). Use tables provide information about consumption of 
commodities by industries or by final demand sectors such as households, government, 
investment or exports (Miller and Blair 2009; Eurostat/European Commission 2008). 
Use table row provides an alternative representation of the market balance as shown in 
Eq. 6. Process models provide information for total consumption of specific commodi-
ties in the sector being modeled as the models are scaled up to represent true production 
or activity of the sector in the regional economy. Hence, process models can be used to 
obtain the use table columns. Similarly, “the supply or make” table contains information 

Table 1  Supply table for  a  region from  process models and  empirical data, modeled 
on SEEA 2012 (SEEA 2014)

Products

Main 
Products Process Model for 

Industry 1 Scale 
Up

Process 
Model for 
Industry 2 
Scale Up

Not 
considered 

here

Empirical 
Estimation 
or Trade 
Models

Domestic 
production + 

Imports
Secondary 
Products

Resources

From 
mapping 
of all 
process 
models

Total 
Resources

Total Total output of Industries Total 
Imports

Total 
flows 
from 

nature

Industries in a Region
Inventories Imports

Flow 
from 

nature
Total SupplyIndustry 1 Industry 2

Notice that residuals are not considered here in detail, and a steady-state assumption is made at this point so that flows into 
and out from inventories are not included

Table 2  Use table for a region from process models and empirical data
Intermediate Consumption 
by Industries in a Region Exports Consumption Flows to 

nature Total Use
Industry 1 Industry 2

Products
(Intermediate 
and Final 
Consumer)

Structural 
Input 

Products
Process 

Model for 
Industry 1 
Scale Up

Process 
Model for 
Industry 2 
Scale Up

Empirical 
Estimation 
or Trade 
Models

Estimation using 
national 

consumption 
data

Interindustry 
consumption + 

Exports + 
ConsumptionAuxiliary 

Inputs

Raw Materials from Nature Interindustry 
consumption

Residuals
From 

process 
models

Total Use of 
Residuals

Total Use Total Use by Industries Total 
Exports

Total Domestic 
Consumption

Total 
Flows to 
Nature
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about the production of commodities in a region by industries, also provided by the 
scale up of process models. 

The supply of a product in the region as provided from domestic production and 
imports can be compared with the use of the product in interindustry consumption, 
exports and household consumption. Domestic production and interindustry consump-
tion data are available from process models as described earlier. Conversion of these 
PSUTs to square PIOTs can be done using EuroStat (Eurostat/European Commission 
2008) approach when data for imports use in sectors are available. In this work, due to 
lack of imports use matrix data, methods provided in EuroStat were not used directly 
to construct the PIOT. Instead, a direct comparison of the values for supply and use of 
commodities for direction of imbalance was used as a first approximation of imports 
and exports by making simplifying assumptions as scenarios which can be used to get 
the RICs from RTCs (Sect. 2.3).

2.3 � Regional input coefficients (RICs) from process models

In order to create the RIC matrix, imports must be removed from the intersectoral 
transactions matrix. Previous work has shown that at the subnational level, informa-
tion on imports and share of use of imports needed to construct the matrix M is gener-
ally not available in physical units (Singh et al. 2017). Hence, information obtained from 
physical supply and use tables (or in the case of no secondary production as we have 
modeled, directly from the PIOT) can be used to make simplifying assumptions, as dis-
cussed below. Once M is available it can be subtracted from Z to obtain the matrix Zrr, 
which is desirable for regional calculations, i.e., Zrr = Z−M (matrix form of Eq. 3). The 
imports column sums are then included in the primary inputs quadrant.

Scenario 1  In scenario 1, no further information is available for physical imports and 
exports. This means that we can solve Eq. 6, but Eq. 8 is still underspecified ( ̄eA and mA are 
unknown). While not ideal, this is the most common situation in the case of regional PIOTs. 
In this case, two methods can be used to approximate a vector of imports for the PIOT:

(a)	 In the standard approach used for regionalization of national IO tables when an 
industrial sector i has higher than national average representation in the regional 
economy, we assume that imports = 0, while exports are nonzero. Thus, zij from 
process models is equal to zrrij  . Regional consumption can be empirically estimated, 
and balance of supply after total consumption (interindustry consumption + con-
sumption) is accounted as exports.

	 Conversely, if sector i has lower than average representation in the regional economy 
as compared to the national economy, we assume that exports = 0. Regional con-
sumption can be empirically estimated, and the balance of use and supply in the 
region is accounted as imports.

(b)	 A simpler approach of looking at the difference between supply and demand 
is taken here. If the supply from process models for a product is higher than the 
demand side data, we assume imports to be 0. Similarly, if demand side data for 
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a product is higher than the supply, we assume exports to be 0. Accordingly, we 
utilize the same approach as above to calculate zrrij  . This approach is similar to the 
balancing approach used by Singh et al. (2017) in developing regional PIOT based 
on empirical data alone.

Once a vector of total imports m is present via scenario 1 if necessary, a PIOT can 
be created. Now all data for the transactions matrix Z and interactions with nature 
(w′ and r′) have been taken from the scaled models, while exports ē , imports m and 
consumption c are available from empirical data collection and scenario 1. The final 
stage of our method transforms the PIOT from RTCs to a PIOT based on RICs. To 
do this, matrix M, a distribution of the total imports to their use by sector is needed. 
In some cases, the information is already present, whether from the data collection 
phase or complete specification through the scenario 1 assumptions made. Scenarios 
2–4 give alternatives for constructing M.

Scenario 2  In scenario 2, we estimate the matrix of imports M from vectors of imports 
m using the scrubbing methods suggested in Miller and Blair or the method described 
in Dietzenbacher et  al. (2005). In the first method by Miller and Blair, all imports are 
imputed to consumption by industries, whereas in the second, some imports are con-
sumed by final demand. The methods allocate the import vector proportionally between 
the sectors and in the second method between the sectors and final demand. The 
approach in Dietzenbacher et al. (2005) is similar to the Miller and Blair approach that 
imputes all imports to industry consumption.

Scenario 3  In scenario 3, more complex interregional trade models such as described 
in Boero et al. (2018) are used for exports and imports values. Once the value of exports 
and imports is available, both supply and use data from process models along with RTCs 
can be used to develop the regional PIOT.

Scenario 4  In scenario 4, standard approaches proposed by EUROSTAT (Eurostat/
European Commission 2008) to convert supply and use tables to symmetrical PIOT can 
be utilized. Process models can provide data for physical supply and use tables. Then, 
the fixed technology assumption can be utilized to convert the PSUT to symmetrical 
PIOTs. For this approach, a use table providing import distribution to all sectors must 
also be present. Thus, scenarios 2 and 3 can be used to obtain the information necessary 
to implement scenario 4.

Among the scenarios described above, we hypothesize that scenario 3 should pro-
vide the most reliable data for PIOT construction since well-developed trade models 
exist (Boero et  al. 2018; Többen and Kronenberg 2015). In this work, we focus on 
demonstration of converting process model data to RTCs and RICs using scenario 1, 
as there was not enough data to build RICs using all scenarios. Hence, an assessment 
of relative confidence levels for building RICs using these scenarios is left for future 
work.
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3 � Case study
3.1 � Overview

We tested the methodology described in Sect. 2 to create a nitrogen (N) PIOT for six 
sectors of the economy (Tables 4 and 5) in Illinois (IL), USA, for 2002. (Other economic 
sectors were aggregated as rest of the economy (ROE) with variable o to represent their 
consumption and o′ to represent their production used as inputs to modeled sectors, so 
the row sum of zij and oi represents total intersectoral consumption and the column sum 
of zij and oj represents total inputs from industry.) A recently published N PIOT for IL in 
2002 (Singh et al. 2017) allowed us to benchmark the performance of our methodology. 
The published PIOT provided an MFA for N that we used to guide the selection of six 
sectors (which are then associated with NAICS codes as mentioned in Sect. 2) related 
to the corn supply chain (Fig. 4) and consequently the technology selection for process 
modeling.

For a PIOT of N, the fertilizer manufacturing sector, where N is mobilized from air via 
the Haber–Bosch process into ammonia (in IL used primarily to fertilize corn), is key. 
Since better models for the corn farming sector are available in the literature, it is part of 
the rest of economy in our PIOT. Corn is processed via feed mills as well as wet and dry 
mills. Wet mills separate the corn kernel into its constituent parts, processing the starch 
into food products (the NAICS corn wet milling sector includes just this production) or 
ethanol (this production is included in the ethyl alcohol manufacturing sector, part of 
other basic organic chemical manufacturing), while the rest of the kernel is used for feed. 
Corn is heated and fermented in dry mills to produce ethanol (and CO2) from the starch, 
while remaining solids are lumped together in our model as dry distillers’ grains solubles 
(DDGS). Milling co-products contains almost all the N in corn. The animal feed process-
ing sector is heterogeneous (see Sect. 4.3.1), necessitating a granular approach for this 
sector. We focused on hog feed production (hogs represent the major livestock type in 
IL) and the hog farming sector. The final sector modeled is slaughtering and processing 
where hogs are slaughtered and carcasses are separated into primal cuts and other parts.

3.2 � Empirical data collection, scaling and mapping to the PIOT

All sectors described above were modeled in Aspen Plus to generate physical flow data. 
(Detailed process inventories and diagrams are provided in Additional file  1.) Aspen 
Plus is a standard software used for simulation of process engineering models (Aspen 

Fig. 4  Models along the corn supply chain completed for this work are shown in green. Black sectors are 
excluded from the work since they are not suitable for Aspen modeling at this stage. Brown denotes sectors 
that have not yet been modeled
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Plus 2018). These sectors were modeled to capture the technology details independently 
using Aspen Plus (described more fully in Additional file 1: Section A1). Flows were then 
mapped to the sectors in IO accounts (Additional file 1: Table A2, Table 5) and to residu-
als or raw materials (process shown in Fig. 3). The completed models were scaled up to 
represent the economy level flows (scaling data provided in Additional file 1: Table A10) 
and run. PIOT values are obtained by multiplying the results by the N weight percentage. 
(All mappings and N weight percentages used are provided in Additional file 1.) Stream 
information from simulation results was translated to PIOT columns for each sector as 
depicted in Fig. 3. (All inventories, process diagrams, N wt percentages and mappings 
are available in Additional file 1: Section A2.) Input streams were mapped either to raw 
materials, the “rest of the economy” o′, or to the modeled sector providing the respective 
products. Output residual streams were aggregated in r′.

Once all PIOT columns were filled in with data from the process modeling results, 
information was available to use Eq. 4 for calculating total inputs ( xr,inputsA  ) to the respec-
tive modeled sectors and check the balance with xr,outputsA  . Hence, right-hand side vari-
ables ( xr,outputsA  , 

∑m
j=1 zAj ) in Eqs. 7 and 8 can now be supplemented with information on 

exogenous final demand, imports and exports for all sectors to build the complete PIOT. 
For the case study, all sectors except “Other basic organic chemical mfg” required a sce-
nario 1b approach (which utilizes the imbalance between supply and use for a sector 
product to generate a vector of imports, m or exports ē ), since only limited information 
on imports, exports and consumption was available. Final demand data used for each 
sector are provided in Additional file 1: Table A11. After applying scenario 1b for other 
sectors, a PIOT based on RTCs is generated (Table 3).

The final step is the preparation of a RIC matrix. In the case study after applying the 
scenario 1b assumption, enough information was present to generate M since the RTC 
matrix (Table 3) had only three nonzero entries. Both sectors with nonzero entries pro-
duce intermediate products (hence consumption in households, ci = 0). In hog farming, 
one nonzero entry is a self-flow, which was specified by the process model mapping as 
imports. Remaining imports were ascribed to slaughter and processing, the only other 
sector that uses products from hog farming. In the case of “feed processing” the total 
production is 75 thousand tons N. Seventy-six thousand tons N are consumed on hog 
farms, computed from process model. Thus, total imports for feed processing must be 
attributed to the connection between feed processing and hog farms. The imports are 
shifted to the imports row in the primary inputs matrix for the PIOT and the updated 
table gives an RIC matrix (Table 4) from the original RTC matrix (Table 3).

4 � Results and discussion
4.1 � Comparison of PIOTs from process modeling versus empirical MFA approach

The N PIOTs from the “process-to-PIOT” approach are shown in Tables 4 (RTC) and 5 
(RIC). We compared the results with the PIOT from Singh et al. (2017), as aggregated in 
Additional file 1: Table A12. The published PIOT in Singh et al. (2017) was also compiled 
using a bottom-up approach by first conducting a MFA for N in the three major agri-
cultural commodities in Illinois’s economy: corn, soy and wheat. Using the MFA, flows 
of N were tracked upstream and downstream for each commodity, and official statis-
tics as well as data from trade associations were used to approximate an N mass balance 
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for each sector. This approach is similar to using LCA data and linearly scaling all flows 
according to the input/outputs for the sectors. One major limitation of the PIOT gener-
ated from this approach was lack of appropriate validation for scaling up data to rep-
resent full regional flows. This limitation has been addressed in our “process-to-PIOT” 
approach.

In this work, we chose sectors to model utilizing the MFA completed in Singh et al. 
(2017). The key synopsis of the difference in our approach here is that each mechanism 
of physical and chemical transformation was modeled. One major benefit is easy repro-
ducibility and adoption of process models to generate PIOT for another region and time 
period quickly as tested on Indiana, a neighboring state, for 2016. Since we have a model 
for each sector as well as a data log for statistical sources for scaling, the models could be 
run and adjusted to represent Indiana’s economy as well (Wachs and Singh 2017).

4.2 � Comparison of sectoral flows in PIOTs from two approaches

The process modeling approach resulted in different extents of coverage of modeled sec-
tors between the two approaches, as shown in Table 5. Specifically, the previous work 
omitted the wet corn milling sector, which includes only mills with the final product of 
human food. This means that for direct comparison of two approaches, the wet and dry 
corn milling sector totals from previous PIOT should be aggregated to give ethyl alcohol 

Table 5  Mapping of  models to  IO sectors with  approximate coverage along  with  total 
production (x) numbers from the process modeling approach (PM) as well as the approach 
in Singh et al. (2017) (MFA)

Validation values for comparison are given in the final column
a  Both PIOTs only cover ethyl alcohol manufacturing, but the corresponding IO sector also includes production of other 
chemicals such as amines that may include N. This distinction is based on MFA in Singh et al., which did not look at other 
chemical production for the sector. In Additional file 1: Table A12 the disaggregated totals are shown for Singh et al. (2017) 
whereas here their sum is shown
b  Omitted from the published PIOT work
c  Process models covered hog food manufacturing, sector also includes cattle, poultry and niche foods
d  Beef production not included in process models

IO acct NAICS 
code

IO account name PM sector 
coverage

MFA sector 
coverage

PM
Total 
production (x) 
(mt tons)

MFA
Total 
production (x) 
(mt tons)

Validation 
value (mt 
tons)

325310 Fertilizer manufac-
turing

> 90% > 90% 193,736 895,400 194,000

325190 Other basic 
organic chemical 
manufacturinga

> 90% > 90% 85,324 67,506 71,000

311221 Wet corn milling > 90% b 31,489 b 27,900

311119 Other animal food 
manufacturingc

~ 50% > 90% 75,492 123,883 140,900

112A00 Animal produc-
tion, except cat-
tle and poultry 
and eggs

> 90% > 90% 30,427 43,979 30,400

31161A Animal (except 
poultry) 
slaughtering, 
rendering, and 
processingd

~ 67% > 90% 29,331 47,262 43,900
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manufacturing (part of NAICS account 325190, “Other Basic Organic Chemical Manu-
facturing”). In the process modeling approach, the animal food and animal slaughtering 
sectors were only partially represented, whereas the previous PIOT included complete 
coverage.

Additional validation of the PIOTs was difficult since no other official PIOTs for the 
USA or US regions exist. The authors made a careful comparison of the two models 
including additional data search and determination of other production activities pre-
sent in the NAICS codes surveyed to estimate true production values (shown in vali-
dation column of Table 5) and intersectoral flows. This showed exclusions such as the 
neglect of corn for animal feed in the prior published PIOT, highlighting limitations 
of the MFA approach based on empirical data alone as tracing missing flows is nearly 
impossible. Additionally, we also found that both approaches failed to account for the 
use of fertilizer by households (see Note on Consumption of Fertilizer outside the Farm-
ing Sectors, Additional file 1: Section A5).

4.2.1 � Sectoral total inputs and outputs (x) comparison

Besides discrepancies caused by incomplete sectoral coverage by models, Table 5 shows 
clear improvements in estimates for N total production flows. The improvements are 
especially striking for the fertilizer manufacturing and corn wet milling sectors. The rela-
tively poor performance (~ 12% worse than original result) for other basic organic chem-
ical mfg is due to an outdated efficiency number for the yield of ethanol (2.47 gallons/
bushel or 0.368 l/kg) in our process model (true yield estimated at 2.74 gallons/bushel or 
0.408 l/kg in 2002), which can be rectified by updating the process model. The omission 
of the wet milling sector in the published PIOT (Singh et al. 2017) shows the benefits of 
the development of linked process models, as do the improvements to the fertilizer mfg 
sector (elaborated more in the next section). The current approach also provided a sig-
nificant correction to the animal farming sector, where, in the previous work, total mass 
inputs were assumed equal to total mass outputs, accounting for 44 thousand tons of 
N. Our models estimated manure production and enteric emissions, showing that most 
mass leaves in residuals, giving a total production (x) of 30 thousand tons of N. We esti-
mate that hog production should make up ~ 90% of the mass flows in this sector, which 
also includes equines, sheep, goats and other miscellaneous livestock, so the process 
model provides a closer estimate than the published approach (which also covered ~ 90% 
of the sector). Further, mechanistic accounting of inputs, outputs and losses improved 
the reliability of these estimates.

4.2.2 � Structural comparison of RTCs, RICs and PIOTs

Figure  5 provides a visualization of all PIOT flows in the two approaches, showing 
(Fig. 5a) the dominance of the flows between the economy and natural resources via raw 
materials and residuals in the process model approach, versus a dominant fertilizer pro-
duction sector in the previous MFA-based approach (Fig. 5b). Since all flows represent 
N, this difference is due primarily to the fertilizer manufacturing sector. Residuals in 
Fig. 5a come primarily from the purge stream of air, since the yield of the Haber–Bosch 
process is low and recycle is needed. An interaction from the hog farming sector is also 
clearly visible in Fig. 5a, since N in manure is classified into residuals.
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Figure  5b shows a much larger production figure from the fertilizer manufacturing 
sector than Fig. 5a. An assumption was made in the PIOT by Singh et al. (2017) that all 
demands were met by local production, giving a total production of 895 thousand tons 
of N (see Additional file  1: Table  A11). Here, our approach should be more accurate, 
giving a production of 194 thousand tons of N with the rest of the local demand met 
by imports (593 thousand tons of N). Since the modeling based on capacity captures 
the production more closely than an assumption of meeting demand locally, it allowed a 
large correction to the figure in the previous PIOT when origin of products being con-
sumed was not reported.

The process model-based PIOT (Table 3) showed a self-flow for animal farming in the 
RTC not shown in Singh et al. (2017). This represents imported animals grown to matu-
rity in state. In the RIC created, the flow disappears since it does not reflect regional 
inputs. For animal feed production we accounted for corn, the major input to hog feed, 
which was omitted in the previously published PIOT. This difference accounts for most 
of the discrepancy in the animal feed sector’s intersectoral flows. Missing flows from 
milling byproducts to animal feed in our PIOT are due to the focus on hog feed, which 
will be rectified as other livestock sectors are modeled and included since in 2002 these 
byproducts were used primarily for cattle and poultry feed.

In the primary inputs matrix, the process model approach provided estimates for 
residuals in all but one sector, while the previous approach has data only for two sectors. 
One major strength of this approach is that it is possible to approximate or incorporate 
information about residuals into process models, which can be difficult to find in official 
statistics. Residuals and other primary material flows are an important part of the PIOT, 
since they frequently make up a large portion of the total mass flows and so are critical 
for extended IO model applications in studying environmental relationship of economic 

Fig. 5  a Chord diagram depicting flows from the RIC (Table 4) version of the PIOT created with our method. 
The large green areas represent the interactions between the fertilizer manufacturing sector and raw 
materials and residuals. b Chord diagram depicting flows from the PIOT prepared by Singh et al. (Additional 
file 1: A12) The large green area represents the flows from raw materials to fertilizer, and the large brown area 
represents the flows from fertilizer to the rest of the economy. Note: the perimeter space is proportional to 
the magnitude of outflow from the sector named. The flow between a sector with each additional sector is 
shown in a distinct color
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production structures. Therefore, it is evident from this 6-sector example here that pro-
cess modeling approach to build PIOTs provides a significant advantage over purely 
empirical approaches in this aspect.

4.3 � Discussions on strengths and limitations of empirical versus process‑based approaches 

to PIOT compilation

As discussed in Sects. 4.1 and 4.2, study of the two approaches allowed us to estimate 
correct values for total production and intersectoral flows. Overall, the process model-
based results stayed within 30% of these values for all sectors. The highest discrepan-
cies were in ethyl alcohol manufacturing and wet corn milling due to high estimates of 
N content in corn and low-efficiency factors for production. While 30% is a high fac-
tor of error, the previous approach performed much more variably against our estimates 
of correct values. (The highest discrepancy tracked was over 160%, and many streams 
compared showed > 30% discrepancy.) This suggests that our process modeling-based 
approach has significant potential to standardize PIOT construction while improving 
reliability.

In both approaches, export and import values are primarily estimated from imbalances 
between supply and use. Better data on exports and imports will improve the confidence 
in PIOTs built from both approaches. We also see from simple mass balance estimates 
that minor sectoral flows and household consumption can cause up to 10% discrepancy 
for many of the sectors in terms of final demand. We perceive that the uncertainty in 
final demand remains high due to lack of data that can only be obtained by survey.

4.3.1 � Heterogeneous and homogeneous sectors

The process modeling approach is best suited for homogeneous sectors (where there 
is a uniform production process across the region) such as corn milling, and may be 
unwieldy and costly for very heterogeneous sectors (with high variability in produc-
tion processes in a region), such as feed processing. Over 1000 operations supply animal 
feed in IL, each following an array of different production recipes. Although processing 
equipment is similar, use varies based on availability of ingredients and local demand 
patterns. We modeled this sector by segmenting the market, i.e., accounting for the 
production from these sectors based on demand which in our case study was hog feed 
needed for hog farms.

Overall, homogeneous sectors are easy to model and change occurs slowly due to large 
capital investments. Therefore, these models can be easily used for long-term projec-
tions of flows in homogeneous sectors. Heterogeneous sector models must be developed 
to stay relevant and be “forward looking.” Nonetheless, this approach provides a trans-
parent way to develop PIOT from the bottom up and can easily be updated to capture 
technology changes.

4.3.2 � Other limitations

One limitation of any process-based approach is the treatment of capital goods such 
as equipments and infrastructure which is handled separately in design phase for the 
production system. Hence, this represents a stock flow for PIOTs and need to be mod-
eled separately, which need to be handled separately. Missing data are another important 
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challenge. Some studies rely on non-survey techniques such as RAS to arrive at approxi-
mations based on whole system data (Miller and Blair 2009). In the case of our model, a 
mass balanced transactions matrix is always generated and less variation to thermody-
namically validated processes should occur due to this balancing. Better data availability 
related to subnational trade and consumption will also improve the reliability for PIOT 
generation.

Another limitation arises due to the capacity of process modeling software to handle 
all production sectors, and hence, relevant modeling software will need to be selected. 
Aspen Plus used in this work [or other open source software like COCO simulator 
(COCO 2018)] can be used for most of the chemical sectors including refining, bio-
mass and waste processing, mechanical production can be modeled using assembly line 
simulation packages, service sectors will need original model development relevant to 
the economy (following causal or correlation between inputs and outputs), farming sec-
tors can use the software/models from agricultural modeling community [such as EPIC 
(Texas A&M AgriLife Research 2017)]. Using process modeling software like Aspen will 
need improvement for handling complex mixtures and solids. Aspen is strong on han-
dling recycle flows and sensitivity analysis to help ensure that product splits and sup-
plemental feeds are present in correct quantities. Still, this method does not depend on a 
specific software, and other simulation software for specific sectors can be used as long 
as production recipes and mass balanced products and residuals are provided at a secto-
ral level. The modeling approach can be adapted to different regions and countries, but 
the models themselves may need to be adjusted based on regional practices. Finally, in 
our first ever demonstration of the process engineering models to PIOT approach we 
have assumed closed temporal boundaries, with no movement in and out of invento-
ries. This can be overcome by integration with dynamic models for capital (Pauliuk et al. 
2015b), which should be supplemented with economic models.

5 � Conclusions and future work
Based on the comparison of PIOT from the approach proposed in this work with a pre-
viously published PIOT, we conclude that a process modeling-based approach offers 
advantages for the construction of PIOTs in improving reliability, transparency, repro-
ducibility and continuity at both regional and national scale. Aggregation and cost pose 
major challenges for PIOTs to enter fully into the set of environmental modeling tools 
based on the EEIO framework. The proposed “process-to-PIOT” approach can address 
the first concern by allowing detailed tracking of flows and transformations. Cost is 
addressed by developing reusable process models which with slight modifications allow 
generation of PIOTs for other regions and time periods.

This approach aligns with the recently proposed rectangular choice-of-technology 
(RCOT) approach, where a rectangular transactions matrix contains multiple rows 
for each sector corresponding to different production technologies (Duchin and Lev-
ine 2011). While currently our approach includes average technologies, we expect that 
the development of a wider array of process models will allow the RCOT approach to 
be adopted more widely. Additionally, the availability of reliable physical technical 
coefficients from this approach can also be integrated with the comprehensive HSUT 
approach (Merciai and Schmidt 2018) for constructing PIOTs.
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Although this approach requires an expensive initial modeling phase, the long-term 
advantages in addressing resource management challenges outweigh the costs. Once 
the modeling approach offered here is adopted on a larger scale, it will be possible 
to include auxiliary flows (thus better tracking of pass-through flows), which require 
more data on process details. In the future, collaborative approaches such as estab-
lished by the Virtual Industrial Ecology Laboratory (Malik et  al. 2014; Wiedmann 
2017), cooperation with industries and stakeholders for model development along 
with integration of the process engineering model approach with existing empirical 
approaches can allow for developing a standardized tool for PIOT development.
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Additional file 1. Supplementary information.

Abbreviations
DDGS: dry distillers’ grains solubles; EEIO: environmentally extended input–output; EIO: economic input–output; H: 
hydrogen; HSUT: hybrid supply and use; IL: Illinois (state in the USA that is the site of our case study); IO: input–output; 
IOT: input–output table; LCA: life cycle analysis; LCI: life cycle inventory; MFA: material flow analysis; MIOT: monetary 
input–output table; MRIO: multiregional input–output modeling; N: nitrogen; NAICS: North American Industry Classifica-
tion System; NH3: ammonia; PIOT: physical input–output table; PSUT: physical supply and use table; RCOT: rectangular 
choice of technology; RIC: regional input coefficients; RTC​: regional technical coefficients; SEEA: System of Environmental 
and Economic Accounting; SUT: supply and use tables; UPIOM: unit physical input–output by materials; US: United 
States.

Authors’ contributions
LW is involved with SS for development of the method (Sect. 2). SS raised the original idea for method development 
and provided foundational relationship of process engineering models with Input–Output framework. LW developed 
the literature review for introduction section. SS and LW equally contributed to introduction writing. LW developed all 
process models for generation of data used in case study. SS and LW contributed equally to discussions and conclusions. 
All authors read and approved the final manuscript.

Author details
1 Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN 
47907, USA. 2 Division of Environmental and Ecological Engineering, Purdue University, 225 S University Street, West 
Lafayette, IN 47907, USA. 

Acknowledgements
We thank Professor Brian Richert for information regarding hog feed manufacturing and feeding practices. We also thank 
three anonymous reviewers for their valuable feedback which has helped us to improve this paper significantly.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Process models created in Aspen Plus are available upon request. Data generated from these process models to con-
struct the PIOT are provided in the additional file.

Funding
We acknowledge funding from Purdue University’s One Year Ross Fellowship program that supported the student (Liz 
Wachs) working on this project. Funding source did not directly affect the design and study outcomes other than the 
student support.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 January 2018   Accepted: 14 September 2018

References
Altimiras-Martin A (2014) Analysing the structure of the economy using physical input–output tables. Econ Syst Res 

26:463–485

https://doi.org/10.1186/s40008-018-0123-1


Page 23 of 24Wachs and Singh ﻿Economic Structures  (2018) 7:26 

Aspen Plus. Leading process simulation software. https​://www.aspen​tech.com/produ​cts/engin​eerin​g/aspen​-plus. 
Accessed Sep 2018

Boero R, Edwards BK et al (2018) Regional input–output tables and trade flows: an integrated and interregional non-
survey approach. Reg Stud 52:225–238

Cape Open to Cape Open (COCO) simulation software. https​://www.cocos​imula​tor.org/. Accessed July 2018
Chen W, Graedel T et al (2016) Building the material flow networks of aluminum in the 2007 US economy. Environ Sci 

Technol 50:3905–3912
Crawford RH et al (2018) Hybrid life cycle inventory methods: a review. J Clean Prod 172:1273–1288
Dietzenbacher E, Albino V et al (2005) The fallacy of using US-type input–output tables. Paper presented at the interna-

tional conference on input–output techniques, vol 15, pp 277–299
Dietzenbacher E, Giljum S et al (2009) Physical input–output analysis and disposals to nature. In: Suh S (ed) Handbook of 

input–output economics in industrial ecology. Springer, Berlin
Dietzenbacher E, Lenzen M et al (2013) Input–output analysis: the next 25 years. Econ Syst Res 25:369–389
Duchin F, Levine S (2011) Sectors may use multiple technologies simultaneously: the rectangular choice-of-technology 

model with binding factor constraints. Econ Syst Res 23:281–302
Eurostat/European Commission (2008) Eurostat manual of supply, use and input–output tables. Office for Official Publi-

cations of the European Communities, Luxembourg
Fry J, West J et al (2016) Constructing a time-series of physical input–output tables for Australia using RAS. Paper pre-

sented at 24th international input–output conference, Seoul, Korea 4–8 July 2016
Giljum S, Hubacek K (2009) Conceptural foundations and applications of physical input–output tables. In: Suh S (ed) 

Handbook of input–output economics in industrial ecology. Springer, Berlin
Gravgaard-Pedersen O (1999) Physical input–output tables for Denmark. Products and materials 1990, air emissions 

1990–92. Statistics Denmark, Copenhagen
Hau J, Yi H et al (2008) Enhancing life-cycle inventories via reconciliation with the laws of thermodynamics. J Ind Ecol 

11:5–25
Hoekstra R (2010) Physical input–output tables: developments and future. Paper presented at 18th international input–

output conference, Sydney Australia, 20–25 June 2010
Hoekstra R, van den Bergh JC (2006) Constructing physical input–output tables for environmental modeling and 

accounting: framework and illustrations. Ecol Econ 59:375–393
Hubacek K, Giljum S (2003) Applying physical input–output analysis to estimate land appropriation (ecological foot-

prints) of international trade activities. Ecol Econ 44:137–151
Konijn P, de Boer S et al (1997) Input–output analysis of material flows with application to iron, steel and zinc. Struct 

Change Econ Dyn 8:129–153
Lindner S, Guan D (2014) A hybrid-unit energy input–output model to evaluate embodied energy and life cycle emis-

sions for China’s economy. J Ind Ecol 18(2):201–211
Malik A, Lenzen M et al (2014) Simulating the impact of new industries on the economy: the case of biorefining in 

Australia. Ecol Econ 107:84–93
Merciai S, Heijungs R (2014) Balance issues in monetary input–output tables. Ecol Econ 102:69–74
Merciai S, Schmidt J (2018) Methodology for the construction of global multi-regional hybrid supply and use tables for 

the EXIOBASE v3 database. J Ind Ecol 22(3):516–531
Miller R, Blair PD (2009) Input–output analysis: foundations and extensions, 2nd edn. Cambridge University Press, New 

York
Nakamura S, Kondo Y et al (2011) UPIOM: a new tool of MFA and its application to the flow of iron and steel associated 

with car production. Environ Sci Technol 45:1114–1120
Nuss P, Chen W et al (2016) Structural investigation of aluminum in the US economy using network analysis. Environ Sci 

Technol 50:4091–4101
Pauliuk S, Majeau-Bettez G et al (2015a) A general system structure and accounting framework for socioeconomic 

metabolism. J Ind Ecol 19:728–741
Pauliuk S, Wood R, Hertwich EG (2015b) Dynamic models of fixed capital stocks and their application in industrial ecol-

ogy. J Ind Ecol 19:104–116
Singh S, Kim H et al (2008) Rectification of multiscale data with reliability assessment to guide external data procurement 

in life cycle assessment. AIChE annual meeting, Philadelphia
Singh S, Jana E et al (2017) A nitrogen physical input–output model for Illinois. Ecol Model 360:194–203
Suh S (2004) A note on the calculus for physical input–output analysis and its application to land appropriation of inter-

national trade activities. Ecol Econ 48:9–17
Suh S, Lenzen M et al (2004) System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci 

Technol 38:657–664
System of Environmental-Economic Accounting 2012: Central Framework, UN (SEEA 2014). https​://unsta​ts.un.org/unsd/

envac​count​ing/seear​ev/seea_cf_final​_en.pdf. Accessed Aug 2018
Teh SH, Wiedmann T et al (2017) Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and 

geopolymer concrete in Australia. J Clean Prod 152:312–320
Texas A&M AgriLife Research (2017) Environmental policy integrated climate (EPIC) model. https​://data.nal.usda.gov/

datas​et/envir​onmen​tal-polic​y-integ​rated​-clima​te-epic-model​. Accessed Aug 2018
Többen J, Kronenberg T (2015) Construction of multi-regional input–output tables using the CHARM method. Econ Syst 

Res 27:487–507
US Census Bureau (2005) Survey of plant capacity: 2004, MQ-C1(04). U.S. Government Printing Office, Washington
Wachs L, Singh S (2017) A physical input–output model for the food-energy-water (FEW) nexus in Indiana. Oral presenta-

tion at the annual meeting of the American Institute for Chemical Engineers (AIChE), Minneapolis, 30 Oct–Nov 4 
2017

Weisz H, Duchin F (2006) Physical and monetary input–output analysis: what makes the difference? Ecol Econ 
57:534–541

https://www.aspentech.com/products/engineering/aspen-plus
https://www.cocosimulator.org/
https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf
https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf
https://data.nal.usda.gov/dataset/environmental-policy-integrated-climate-epic-model
https://data.nal.usda.gov/dataset/environmental-policy-integrated-climate-epic-model


Page 24 of 24Wachs and Singh ﻿Economic Structures  (2018) 7:26 

Wiedmann T (2017) An input–output virtual laboratory in practice—survey of uptake, usage and applications of the first 
operational IELab. Econ Syst Res 29:296–312

Wolfram P, Wiedmann T et al (2016) Carbon footprint scenarios for renewable electricity in Australia. J Clean Prod 
124:236–245

Yi H, Bakshi B (2007) Rectification of multiscale data with application to life cycle inventories. AIChE J 53:876–890


	A modular bottom-up approach for constructing physical input–output tables (PIOTs) based on process engineering models
	Abstract 
	1 Introduction and motivation
	2 Proposed method for PIOT construction using process engineering models
	2.1 Regional input–output models
	2.1.1 Process models to regional input–output models
	2.1.2 Regional technical coefficients (RTCs) from process models

	2.2 Physical supply and use tables (PSUTs) from process models
	2.3 Regional input coefficients (RICs) from process models

	3 Case study
	3.1 Overview
	3.2 Empirical data collection, scaling and mapping to the PIOT

	4 Results and discussion
	4.1 Comparison of PIOTs from process modeling versus empirical MFA approach
	4.2 Comparison of sectoral flows in PIOTs from two approaches
	4.2.1 Sectoral total inputs and outputs (x) comparison
	4.2.2 Structural comparison of RTCs, RICs and PIOTs

	4.3 Discussions on strengths and limitations of empirical versus process-based approaches to PIOT compilation
	4.3.1 Heterogeneous and homogeneous sectors
	4.3.2 Other limitations


	5 Conclusions and future work
	Authors’ contributions
	References




