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1  Introduction
Keynesian macroeconomics inspired the seminal work of Samuelson, who actually intro-
duced the business cycle theory. Although primitive and using only the demand point of 
view, the Samuelson’s prospect still provides an excellent insight into the problem and 
justification of business cycles appearing in national economies. In the past decades, 
other models have been proposed and studied by other researchers for several applica-
tions, see Chari (1994), Chow (1985), Dassios et al. (2014a), Dassios and Zimbidis (2014), 
Dassios and Kalogeropoulos (2014), Dassios and Baleanu (2018), Dassios (2018b), Das-
sios and Devine (2016), Dorf (1983), Kuo (1996), Milano and Dassios (2016), Liu et al. 
(2017, 2019a, b), Puu et  al. (2004), Rosser (2000), Samuelson (1939), Schinnar (1978), 
Westerhoff (2006), and Wincoop (1996). All these models use mechanisms involving 
monetary aspects, inventory issues, business expectation, borrowing constraints, wel-
fare gains, and multi-country consumption correlations. Some of the previous articles 
also contribute to the discussion for the inadequacies of Samuelson’s model. The basic 
shortcoming of the original model is: the incapability to produce a stable path for the 
national income when realistic values for the different parameters (multiplier and accel-
erator parameters) are entered into the system of equations. Of course, this statement 
contradicts with the empirical evidence which supports temporary or long-lasting busi-
ness cycles. In this article, we propose a special case, i.e., a modification of the typical 
model incorporating delayed variables into the system of equations and focusing on con-
sumption and investments.
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Actually, the proposed modification succeeds to provide a more comprehensive expla-
nation for the emergence of business cycles while also producing a stable trajectory for 
national income. The final model is a discrete time system of first order and its equilib-
rium, i.e., equilibrium of the proposed reformulated Samuelson economical model, is 
not always unique. For the case that we have infinite equilibriums, we provide an optimal 
equilibrium for the model.

2 � The model
The original version of Samuelson’s model is based on the following assumptions:

Assumption 1  National income Tk at time k equals to the summation of three ele-
ments: consumption, Ck , private investment, Ik , and governmental expenditure Gk:

Assumption 2  Consumption Ck at time k depends on past income (only on last year’s 
value) and on marginal tendency to consume, modelled with a, the multiplier parameter, 
where 0 < a < 1:

Assumption 3  Private investment at time k depends on consumption changes and 
on the accelerator factor b, where b > 0 . Consequently, Ik depends on national income 
changes:

Assumption 4  Governmental expenditure Gk at time k remains constant:

Hence, the national income is determined via the following second-order linear differ-
ence equation:

Our reformulated (delayed) version of Samuelson’s model is based on the following 
assumptions:
Assumption 5  National income Tk at time k equals to the summation of two elements: 
consumption, Ck and private investment, Ik:

Assumption 6  Consumption Ck at time k is a linear function of the incomes of the 
two preceding periods. The governmental expenditures in our model are included in the 
consumption Ck:

or, equivalently,

Here, P, c1 , and c2 are constant, and c1 > 0 , c2 > 0 , and 0 < c1 + c2 < 1.

Tk = Ck + Ik + Gk .

Ck = aTk−1.

Ik = b(Ck − Ck−1) = ab(Tk−1 − Tk−2).

Gk = Ḡ.

Tk+2 − a(1+ b)Tk+1 + abTk = Ḡ

(1)Tk = Ck + Ik .

Ck = c1Tk−1 + c2Tk−2 + P

(2)Ck+3 = c1Tk+2 + c2Tk+1 + P.
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Assumption 7  Private investment Ik at time k, depends on consumption changes 
and on the positive accelerator factors b . Consequently, Ik depends on the respective 
national income changes:

or, using (2), we get the following:

or, equivalently,

Hence, using (2) and (3) into (1), the national income is determined via the following 
high-order linear difference equation:

3 � The equilibrium
Consumption, Ck , depends only on past year’s income value, while private investment Ik , 
depends on consumption changes within the last 2 years and governmental expenditure, 
Gk , depends on past year’s income value. From (4), the national income is then deter-
mined via the following third-order linear difference equation:

Lemma 1  The difference equation (4) is equivalent to the following matrix difference 
equation

Here

and

Proof  We consider (4) and adopt the following notations:

and

Ik = b(Ck − Ck−1)

Ik = bc1Tk−1 + b(c2 − c1)Tk−2 − bc2Tk−3

(3)Ik+3 = bc1Tk+2 + b(c2 − c1)Tk+1 − bc2Tk .

(4)Tk+3 − c1(1+ b)Tk+2 − [c2 + b(c2 − c1)]Tk+1 + bc2Tk = P

Tk+3 − c1(1+ b)Tk+2 − [c2 + b(c2 − c1)]Tk+1 + bc2Tk = P.

(5)Yk+1 = FYk + V .

(6)F =





0 1 0

0 0 1

−bc2 c2 + b(c2 − c1) c1(1+ b)



, V =





0

0

P



,

Yk =





Yk ,1
Yk ,2
Yk ,3



, Yk ,1 = Tk .

Yk ,1 = Tk ,

Yk ,2 = Tk+1,

Yk ,3 = Tk+3.

Yk+1,1 = Tk+1 = Yk ,2,

Yk+1,2 = Tk+2 = Yk ,3,

Yk+1,3 = Tk+3 = c1(1+ b)Tk+2 + [c2 + b(c2 − c1)]Tk+1 − bc2Tk + P.
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Then

or, equivalently,

or, equivalently,

or, equivalently,

The proof is completed.
The discrete time system of first order can be studied in terms of solutions, stability, 

and control, see Apostolopoulos and Ortega (2018), Dai (1988), Dassios (2012, 2015a, 
2018a), Dassios and Szajowski (2016), Dassios and Kalogeropoulos (2013), Dassios et al. 
(2017), Leonard (1996), Ogata (1987), Ortega and Apostolopoulos (2018), Rugh (1996), 
Sandefur (1990), Steward and Sun (1990), and Verde-Star (1994). Next, we provide a 
Lemma for the equilibrium of this system.

Lemma 2  The equilibrium(s) se of the reformulated Samuelson economical model (4) is 
given by the solution of the following algebraic system:

where

Proof  From Lemma 1, the reformulated Samuelson economical model (4) is equivalent 
to (5). Then, to find the equilibrium state of this matrix difference equation, we have the 
following:

that is

and hence,





Yk+1,1

Yk+1,2

Yk+1,3



 =





Yk ,2
Yk ,3

c1(1+ b)Tk+2 + [c2 + b(c2 − c1)]Tk+1 − bc2Tk + P



,





Yk+1,1

Yk+1,2

Yk+1,3



 =





Yk ,2
Yk ,3

c1(1+ b)Tk+2 + [c2 + b(c2 − c1)]Tk+1 − bc2Tk + P



+





0

0

P



,





Yk+1,1

Yk+1,2

Yk+1,3



 =





0 1 0

0 0 1

−bc2 c2 + b(c2 − c1) c1(1+ b)









Yk ,1
Yk ,2
Yk ,3



+





0

0

P



,

Yk+1 = FYk + V .

(I3 − F)Y ∗ = V ,

Y ∗ =





se
s2
s3



.

limk−→+∞Yk = Y ∗
,

limk−→+∞





Yk ,1
Yk ,2
Yk ,3



 =





se
s2
s3



,
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or, equivalently,

The proof is completed.
If the equilibrium is unique, we can study its stability based on the eigenvalues of 

matrix F, see Boutarfa and Dassios (2017), Cheng and Yau (1997), Datta (1995), Das-
sios (2015b), Milano and Dassios (2017), and Lewis (1986, 1987, 1992). Next, we pro-
vide a Lemma which determines when the equilibrium of (5) and consequently of (4) 
is unique.

Lemma 3  Consider the system (5) and let G = I3 − F  . Then, G is a regular matrix if 
and only if

Proof  We consider (5), and then

The determinant of G is equal to

or, equivalently,

Hence, the matrix G is regular if and only if

or, equivalently,

The proof is completed.
We are now ready to state our main Theorem:

Theorem 1  Consider the system (5) and the matrices F, V, and G as defined in (6) and 
(7) respectively, i.e., let G = I3 − F  . Then

(a)	 If G is full rank, the solution Y ∗ of (5) is given by the following: 

 and consequently, the unique equilibrium of the reformulated Samuelson economi-
cal model (4) is given by the following: 

(b)	 If G is rank deficient, then an optimal solution Ŷ ∗ of (5) is given by the following: 

Y ∗ = FY ∗ + V ,

(I3 − F)Y ∗ = V .

1− c1 − c2 �= 0.

(7)G =





1 − 1 0

0 1 − 1

bc2 − c2 − b(c2 − c1) 1− c1(1+ b)



.

det(G) = bc2 − c2 − b(c2 − c1)+ 1− c1(1+ b),

det(G) = −c2 + 1− c1.

det(G)  = 0,

1− c2 − c1 �= 0.

Y ∗ = (I3 − F)−1V ,

se = (1− c2 − c1)
−1P.
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 Here, E is a matrix, such that GTG + ETE is invertible and �E�2 = θ , 0 < θ ≪ 1 .  
Where �·�2 is the Euclidean norm.

Proof  Let G = I3 − F  . For the proof of (a), since G is full rank, from Lemma 3, we have 
1− c2 − c1 �= 0 . Then, where G is equal to  the following:

Hence, the equilibrium Y ∗ is given by the unique solution of system (5), that is

or, equivalently, since

we have the following:

 or, equivalently,

or, equivalently,

For the proof of (b), since G is rank deficient, if V /∈ colspanG system (5) has no solutions 
and if V ∈ colspanG system (5) has infinite solutions. Let

such that the linear system

or, equivalently the system

has a unique solution. Where E is a matrix, such that GTG + ETE is invertible, �E�2 = θ , 
0 < θ ≪ 1, and EŶ ∗

n  is orthogonal to V̂ − GŶ ∗
n  . We use E, because G is rank deficient, 

(8)Ŷ ∗ = (GTG + ETE)−1GTV .

G =





1 − 1 0

0 1 − 1

bc2 − c2 − b(c2 − c1) 1− c1(1+ b)



.

Y ∗ = G−1V ,

G−1 =
1

1− c1 − c2





−c2 + bc1) 1− c1(1+ b) 1

−bc2 1− c1(1+ b) 1

−bc2 c2 − bc1 1



;

Y ∗ =
1

1− c1 − c2





−c2 + bc1) 1− c1(1+ b) 1

−bc2 1− c1(1+ b) 1

−bc2 c2 − bc1 1









0

0

P



,

Y ∗ =
1

1− c1 − c2





P
P
P



,

Y ∗ =
P

1− c1 − c2





1

1

1



.

V̂ (Ŷ ∗
n ) = V̂ + EŶ ∗

n ,

GŶ ∗
n = V̂ (Ŷ ∗

n ),

(G − E)Ŷ ∗
n = V̂ ,
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i.e., the matrix GTG is singular and not invertible. We want to solve the following opti-
mization problem:

or, equivalently,

or, equivalently,

To sum up, we seek a solution Ŷ ∗
n  minimising the functional

Expanding D1(Ŷ
∗
n ) gives the following:

or, equivalently,

because VTGŶ ∗
n = (Ŷ ∗

n )
TGTV  . Furthermore

Setting the derivative to zero, ∂

∂Ŷ ∗
n

D1(Ŷ
∗
n ) = 0 , we get the following:

The solution is then given by the following:

Hence, the optimal equilibrium is given by (8). Note that similar optimization tech-
niques have been applied to several problems of this type of algebraic systems, see Cuffe 
et al. (2016), Dassios et al. (2015), Dassios (2015c, 2019) and Dassios and Baleanu (2019). 
The proof is completed.

Further research is carried out for even higher order equations investigating qualitative 
results. For this purpose, we may use an interesting tool applied to difference equations 
with many delays, the fractional nabla operator, see Atici and Eloe (2011), Dassios and 
Baleanu (2013, 2015), Dassios et al. (2014b), Dassios (2017, 2015d), Klamka and Wyrwał 
(2008), Klamka (2010) and Podlubny (1999). The fractional nabla operator is a very inter-
esting tool for this, since it succeeds to provide information from a specific year in the 

min

∥

∥

∥
V − V̂

∥

∥

∥

2

2
,

s.t. (G − E)Ŷ ∗
n = V̂ ,

min

∥

∥

∥
V − (G − E)Ŷ ∗

n

∥

∥

∥

2

2
,

min

∥

∥

∥
V − GŶ ∗

n

∥

∥

∥

2

2
+

∥

∥

∥
EŶ ∗

n

∥

∥

∥

2

2
.

D1(Ŷ
∗
n ) =

∥

∥

∥
V − GŶ ∗

n

∥

∥

∥

2

2
+

∥

∥

∥
EŶ ∗

n

∥

∥

∥

2

2
.

D1(Ŷ
∗
n ) = (V − GŶ ∗

n )
T (V − GŶ ∗

n )+ (EŶ ∗
n )

TEŶ ∗
n ,

D1(Ŷ
∗
n ) = VTV − 2VTGŶ ∗

n + (Ŷ ∗
n )

TGTGŶ ∗
n + (Ŷ ∗

n )
TETEŶ ∗

n ,

∂

∂Ŷ ∗
n

D1(Ŷ
∗
n ) = −2GTV + 2GTGŶ ∗

n + 2ETEŶ ∗
n .

(GTG + ETE)Ŷ ∗
n = GTV .

Ŷ ∗
n = (GTG + ETE)−1GTV .
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past until the current year. The nabla operator of nth order, n Natural, applied to a vec-
tor of sequences Yk : Nα → C

m is defined by the following:

where aj = (−1)j 1
Ŵ(n+1)Ŵ(j+1)Ŵ(n−j+1)

 . The nabla fractional operator of nth order, n Frac-
tional, applied to a vector of sequences Yk : Nα → C

m is defined by the following:

where bj = 1
Ŵ(−n) (k − j + 1)−n−1 and (k − j + 1)−n−1 =

Ŵ(k−j−n)
Ŵ(k−j+1)

 . For all this, there is 
already some ongoing research.

4 � Conclusions
Closing this paper, we may argue that it is not only a theoretical extension of the basic 
version of Samuelson’s model, but also a practical guide for obtaining the optimal equi-
librium of this model; in the case, we have infinite many equilibriums. We studied the 
equilibrium of an extended case of the classical Samuelson’s multiplier–accelerator 
model for national economy. We also focused on the case that the equilibrium is not 
unique and provided a method to obtain the optimal equilibrium.
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