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1 Introduction
From the early developments of domestic input–output analysis starting with Leontief 
(1936), the scope has broadened, both to account for trade relationships across econ-
omies (Leontief and Strout 1963) and to extend the framework to enable the attribu-
tion of social and environmental impacts, domestic and abroad, to economic activities 
(Leontief 1970; Miller and Blair 2009). Multiregional input–output (MRIO) models 
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have been widely used in carbon footprint calculations as they provide an appropriate 
methodological framework for calculations at the national, international and global level 
(Wiedmann 2009b). In later years, MRIO applications have extended to a wide range of 
footprint analyses, such as material (Wiedmann et al. 2015; Ivanova et al. 2016; Bruck-
ner et  al. 2012; Wiebe et  al. 2012), land (Ivanova et  al. 2016; Steen-Olsen et  al. 2012; 
Weinzettel et al. 2013), biodiversity (Verones et al. 2017; Lenzen et al. 2012; Wilting et al. 
2017, Többen et al. 2018; Marques et al. 2019), labor (Alsamawi et al. 2014a; Simas et al. 
2014), income inequality (Alsamawi et al. 2014b) and energy (Wiedmann 2009a; Owen 
et al. 2017).

The strength of MRIO analysis as a methodology for environmental impact assess-
ment is its ability to trace the impacts of products through the whole supply chain and 
attribute the impacts at different stages of production to final consumers (Moran and 
Wood 2014). This enables MRIO analysis to trace increasingly fragmented international 
supply chains across primary, secondary and tertiary producers, to give a more complete 
picture of the impacts of final consumption of nations, in comparison to biophysical 
accounting methods purely based on physical data (Bruckner et al. 2015). A drawback of 
MRIO analysis in environmental impact studies is the lacking resolution to trace specific 
products and/or materials (Schaffartzik et al. 2015) or differentiate production technolo-
gies in detail. In addition, the efforts to harmonize sectoral and regional data and satel-
lite accounts may require additional aggregation that can compromise the accuracy of 
environmental and socioeconomic results (Steen-Olsen et al. 2014; Lenzen 2011).

Today several global MRIO databases exist, such as Eora (Lenzen et al. 2013), WIOD 
(Timmer et al. 2015), GTAP-MRIO (Aguiar et al. 2016), the OECD-ICIO (Yamano and 
Webb 2018), and EXIOBASE (Tukker et al. 2013). Ideally, a global MRIO is as detailed as 
possible on both the product/industry resolution as well as on the number of explicitly 
represented countries. In addition, the ideal MRIO should be available as a consistent 
long and up-to-date time series and provide detailed socioeconomic and environmen-
tal extensions (Tukker and Dietzenbacher 2013). In order to have a consistent data-
base between different world regions, MRIO developers necessarily need to deal with 
aggregations of extensions, regions and sectors into a standardized classification system 
(Lenzen 2011). Due to lack of easily available data for many countries, the approach 
sometimes used to reach global coverage is by estimating “rest-of-the world regions” 
(RoW), which typically consist of the remaining countries that are not explicitly cov-
ered in the database. In EXIOBASE and WIOD, RoW regions comprise over one-third 
of the world population and 33–44% of global land use, and the aggregation of countries 
into regions can potentially underestimate impacts embodied in trade, in particular for 
highly localized pressures such as land use (Stadler et al. 2014).

Discrepancies in environmental impact results across MRIOs are well-documented 
(Giljum et al. 2019; Owen et al. 2014, 2016; Wieland et al. 2018) and hamper the policy 
uptake of MRIO results (Moran and Wood 2014; Peters 2007). The robustness of MRIO 
compared to other methods for estimating sector-specific environmental impacts such 
as for land use is disputed in the literature. For instance, Schaffartzik et al. (2015) com-
pared biophysical methods and MRIO studies on land use and found a high correlation 
in regional results for various land use types per capita, except for a few outliers. On 
the other hand, when trying to interpret MRIO results in comparison to physical trade 
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results, Kastner et al. (2014) found that China is a major net importer of cropland prod-
ucts and embodied cropland in MRIO studies, while physical trade analyses show the 
opposite. Hubacek and Feng (2016) argue that part of this discrepancy in results between 
analyses based on MRIO and physical trade balances can be attributed to the differenc-
ing system boundaries and conceptual differences, and thus the methods tackle differ-
ent research questions. Bruckner et al. (2015) summarize the conceptual challenges of 
using MRIO for attributing land use impacts, especially where aggregation is performed 
due to lack of product detail (Weinzettel et al. 2014) and regional detail (Stadler et al. 
2014). In terms of robustness of impact assessment results from MRIOs, Su et al. (2010) 
find that around 40 sectors are sufficient to avoid large uncertainties in  CO2 emissions 
embodied in exports. Comparing the impacts embodied in exports by disaggregating the 
SUTs of EXIOBASE at a detail of 59 sectors versus 129 sectors, Wood et al. (2014) found 
differences in the order of maximum 5% for labor and compensation of employees, 
while  CO2 impacts differed up to 50%. Steen-Olsen et al. (2014) further investigated the 
effect of sector aggregation on  CO2 multipliers (kg  CO2/$) in different MRIO databases. 
Similar to Wood et  al. (2014), they found that aggregating sectors of different MRIOs 
to 17 sectors significantly changed the  CO2 multipliers, and that the multiplier errors 
increased with increased sectoral detail in the original database. Similarity in economic 
input structures among sectors did not imply similarity in terms of emission profiles. 
This advocates for high sectoral detail despite the potentially much larger compilation 
effort when building MRIOs. This view is supported by Lenzen (2011) who proposed 
that aggregating environmental extensions to sectors is a large source of uncertainty as 
they can be highly heterogeneous. Consequently, Lenzen (2011) proposed disaggregat-
ing input–output structures to match the detail of the environmental extensions as the 
best option for estimating input–output multipliers and reducing uncertainties.

The effects of regional aggregation in MRIOs were studied by Bouwmeester and Oost-
erhaven (2013). Using EXIOBASE, they find large deviations in regional  CO2 footprints 
(up to 22%) and water use (up to 84%) when aggregating 43 regions to four broad regions 
and one rest-of-the-world region. Su and Ang (2010) find that energy-related  CO2 emis-
sions are highly dependent on regional aggregation when using an MRIO of China, com-
paring China as a single region versus split into eight regions. Nevertheless, an earlier 
paper by Miller and Shao (1990) using an US MRIO model suggests that regional aggre-
gation leads to smaller uncertainties than sectoral aggregation. In part, this is supported 
by de Koning et al. (2015) who found the aggregation of extensions to be more important 
than regional and sectoral aggregation for absolute material footprints. Although, due 
to a significant share of global material extraction in the global south, a more detailed 
regional coverage of this region in EXIOBASE has been called for by Wiebe et al. (2019). 
The study of regional aggregation effects due to the RoW aggregation by Stadler et al. 
(2014) showed that the RoW regions’ share of global land use (33–44% of the global 
total) are much larger than the equivalent share of global warming potential (17–22%). 
Furthermore, Stadler et al. (2014) found that 38% of global land exports originate in the 
RoW regions, underlining the need for a higher country resolution to reduce uncertain-
ties in estimating land use embodied in trade.

In terms of available MRIO databases, EXIOBASE has the highest consistent sector 
resolution of the available MRIO databases, but is limited in regional resolution. Eora 



Page 4 of 25Bjelle et al. Economic Structures            (2020) 9:14 

has high country coverage and higher sector detail for some counties, but as the level of 
detail varies from region to region, this complicates the between-region comparison of 
impacts on a sectoral level. For example, Eora has only one sector aggregating all agri-
cultural, forestry and fishing activities for most countries in the world. The GTAP-MRIO 
probably has the best compromise of sectoral resolution (57 sectors) and country (140 
regions), but is currently not available as a time series, and has limited sectoral resolu-
tion outside the agricultural and food sectors. Ideally, there would be a MRIO database 
with high sector resolution, individual country coverage and a full time-series.

The aim of this paper is to describe the steps towards such an improved MRIO, by 
increasing the country resolution of EXIOBASE 3 to explicitly including all domestic 
economies registered in the UN main aggregates database (214 countries, see below).

We use this extended EXIOBASE (named EXIOBASE 3rx) to show the relevance of 
additional regional disaggregation to estimate land use embodied in trade. We study 
the degree of regional aggregation errors on both a regional and on a harmonized and 
detailed product level.

In the following method section, we describe the development of EXIOBASE 3rx and 
present its methodological building blocks, describe the processing of land use exten-
sions, and the method for comparing the two databases with different regional resolu-
tion. In the result section, we present land footprints and explore the degree of regional 
aggregation errors for land use embodied in trade. To isolate the effect of regional aggre-
gation on land use, we compare an EXIOBASE version where the MRIO structure is 
pre-aggregated (aggregation of IO data before calculation of coefficients and results), 
referred to from now on as the aggregated database, with EXIOBASE 3rx, where the 
land use results of the full detailed database are aggregated to 49 regions. The implica-
tion of this work is further picked up in the next section, where we discuss our results 
for both MRIO development and the use of MRIO for land use studies now and in the 
future.

2  Methods
2.1  Building EXIOBASE 3rx

The approach to building the monetary supply–use tables for EXIOBASE 3rx (Fig.  1) 
closely follows previous approaches establishing EXIOBASE 3 and EXIOBASE 2 (Wood 
et al. 2015, Stadler et al. 2018). Deviations from the EXIOBASE 3 workflow can be found 
in Additional file 1: S1. In EXIOBASE 3, the economic structures of 44 regions are avail-
able in the form of (aggregate) supply–use tables (SUTs). These SUTs are both disaggre-
gated and balanced to product, industry, and trade data. From the SUTs, a trade-linking 
procedure (Wood et al. 2015) and application of an IO construct (Majeau‐Bettez et al. 
2014) is applied to obtain square MRIO tables. In order to estimate the SUTs for the 
RoW regions in EXIOBASE2 and 3, global average coefficient data was reconciled with 
product output, industry and trade data (see Stadler et al. (2014) for more information). 
EXIOBASE 3 adds top-level constraints of macroeconomic data to ensure consistency 
between regions and over time at a highly aggregate level.

EXIOBASE 3 had a strong European focus (28 EU member states, 16 major econo-
mies) and 5 RoW regions (RoW Asia and Pacific, RoW Europe, RoW Africa, RoW Amer-
ica, RoW Middle East). In this work, we extend the procedure used in estimating RoW 
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regions in EXIOBASE 3, but apply it to individual countries in order to expand the num-
ber of regions from originally 49 to 214 (Additional file 2). As SUT data are not com-
monly available for the countries in the RoW regions, we follow the regional approach 
where we use proxy data in the form of generic estimates of coefficients of the supply 
(i.e., market share relationships) and use matrices (intermediate use and final demand 
coefficients) to give an initial estimate of the product/industry transactions. The coeffi-
cients are then reconciled to globally balanced estimates of trade data, estimates of prod-
uct outputs for every country and macroeconomic data on value added, taxes, exports, 
imports, final consumption and gross capital formation (for an overview of regional data 
sources, see Additional file 1: S2). The macroeconomic data serve as the top-level data 
towards which all the other data are balanced. The number of countries is based on the 
available macroeconomic data from the UN National Main Aggregates Database (United 
Nations 2018a). Additionally, we estimate land use extensions for all 214 countries (more 
info in Additional file 1: S11).

2.2  Trade estimates and reconciliation

In order to process the country-specific trade data, we combine data from three data 
sources when compiling the trade estimates. The BACI database is the main data source 
(balanced product trade data based on the UN Comtrade database, for more informa-
tion see Gaulier and Zignago (2010)), while the UN services trade database (United 
Nations. 2018b) and the IEA database (International Energy Agency 2018) provide data 
for services and energy products/services, respectively. Re-exports are estimated in the 
same way as EXIOBASE 2 and 3 (based on SUT data for re-exports where available, and 
extrapolated based on Comtrade data).

After compiling the initial estimate of the trade data, this is reconciled against the 
top-level macroeconomic trade data in current price obtained from the UN National 
Accounts Main Aggregates Database. Here, we replace the quadratic programming 

Fig. 1 EXIOBASE 3rx: compilation steps for monetary supply use tables. Approach based on figure in Stadler 
et al. (2018)
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approach with an information theoretical approach. We minimize cross-entropy (CE), 
also known as Kullback–Leibler Divergence (Kullback and Leibler 1951), between the 
final trade flows of product i from country r to country s , prsi  , and their initial estimate 
qrsi , subject to constraints requiring that total export and import values from the UN 
National Main Aggregates Database, EXr and IMs , are met. In addition to the constraint 
that total exports by country and product are less than gross output, xrmaxi

 . For the gen-
eral methodology, see Golan and Vogel (2000). As in Többen and Schröder (2018), we 
implement the computationally much more efficient unconstrained dual of the minimal 
cross-entropy problem. In the dual version, the cross-entropy model takes the form

where �r1 and �s2 are Lagrangian multipliers referring to the equality constraints. Follow-
ing the approach of Kazama and Tsujii (2005), the inequality constraints are formulated 
as lower and upper bounds with �rmaxi

 and �rmini
 being the Lagrangians and xrmaxi

 and xrmini
 

being the bounds. In this application, the lower bounds are equal to zero, whereas the 
upper bounds are equal to gross output by country and product.

From the Lagrangians maximizing D , the final trade flows can be computed by

2.3  Estimating product output

Product output estimates were processed in EXIOBASE 3 (Stadler et  al. 2018) and 
combines data from several national account databases, FAOSTAT (2014), IEA energy 
balances (IEA 2015) and product output from EXIOBASE 2 (for more information 
see Additional file 1: S1 and S9 in Stadler et al. (2018)). The main difference is that for 
EXIOBASE 3rx we process the raw data on an individual country level also for all former 
RoW countries. In the next step, these data sources served to disaggregate the UN mac-
roeconomic industry output data (United Nations. 2018a), which consists of gross value 
added from seven aggregated industries. By applying a concordance matrix between the 
seven UN industries and the 163 EXIOBASE industries (Additional file  1: S3) and by 
assigning a quality index to the different data sources based on their closeness to raw 
data, the routine disaggregates the UN industry data. The disaggregation is based on the 
values in the chosen raw data source. The result is product output at the level of the 
163 industries and 200 products of EXIOBASE. In general, this procedure should give 
reasonable estimates for agricultural, food and energy products, whilst missing detailed 
country-specific data on manufactured products and services.
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2.4  Initial estimates of the input–output structure

For the 44 countries that exist in EXIOBASE 3, the coefficients are used directly as initial 
estimates in EXIOBASE 3rx. For each of the 170 RoW countries, we use the coefficients 
from the respective RoW region from EXIOBASE 3. If EXIOBASE 3 coefficients caused 
balancing problems—such as conflicting constraints between the initial estimate of the 
SUT and the top-level macroeconomic data, we used EXIOBASE 2 coefficients instead.

2.5  Balancing supply–use tables

The monetary SUT balancing routine applies an algorithm similar to the approach in 
Stadler et al. (2018) using a quadratic programming target function. One important differ-
ence here is that, due to lack of data on a detailed country level, taxes, trade and transport 
margins are not estimated as explicit layers in our approach. Hence, our system is an MRIO 
in basic pricing only. The results are monetary SUTs estimated for every country and year 
independently for a time series from 1995 to 2015 for 214 countries. The balancing routine 
was unable to find a solution for a few countries, about 3.3% of all cases through the time 
series. See an overview in Additional file 1: S5 of the unbalanced countries.

2.6  Converting from monetary SUTs to IO tables

To go from individual SUTs to analytical IOTs, we stop at the step before creating fully 
detailed multiregional input–output tables (see Peters et  al. 2011), and instead aim 
for trade-linked IOTs. This gives us the possibility to apply bilateral trade approaches 
rather than full MRIO approaches (Peters 2008, and see below). Due to the approach 
outlined above (balancing trade first, and not changing it in the SUT balancing), we 
ensure that the final SUTs are globally consistent (i.e., that imports and exports match 
for trading partners). The result is hence a fully trade-linked SUT system. In the final 
step, SUTs were converted to IO tables using the procedure described in EUROSTAT 
(2008). The industry technology construct is applied to deal with co-production. Using 
this approach, we avoid the problem of negative coefficients that could be faced when 
applying, e.g., the commodity technology construct (Jansen and Raa 1990). The choice 
of producing trade-linked IO tables rather than fully compiled MRIO tables (as per 
EXIOBASE3) was due to the significantly lower loading and running time, and does not 
constitute a loss of data (we had no additional data to inform the trade relationships). 
Normal desktop computers are not able to handle the memory requirements of a fully 
complied MRIO system of the size of EXIOBASE 3rx, but can easily handle the trade-
linked system. Because of the trade proportionality assumption over the import use esti-
mates, if a full MRIO system is desired, either the approach of Peters et al. (2011) could 
be followed if no memory constraints exist, or topological transformation of the data 
could be applied as explained in Rodrigues et al. (2016).

2.7  Compiling the land use data

To obtain land use data at the sectoral resolution of EXIOBASE, we followed a two-step 
procedure: First, we created spatially explicit maps for major land cover types based 
on publicly available state-of-the-art datasets. The data were harmonized following a 
closed-budget mapping approach (Erb et al. 2007), i.e., the sum of all layers will add up 
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to 100% or the available land area for each specific grid cell. In a second step, we utilized 
information from census statistics (FAOSTAT) to further disaggregate the data to closely 
match the EXIOBASE sector classification (in table format). See Additional file 1: S11 
for a detailed description of establishing the land use dataset.

The land use extensions comprise 207 countries, which cover most of the countries in 
EXIOBASE 3rx. For the remaining seven countries, mainly Island states like Palau and 
Nauru, we use the land area variable from FAOSTAT (2019) to estimate the land use 
accounts of the missing countries. We first choose a country (country A) with existing land 
use data and geographical proximity to the country with missing data (country B). Next, the 
land use extensions of country B are estimated by scaling the data of country A based on the 
land area variable of country B relative to that of country A. Next, we remap the land use 
data into EXIOBASE 3rx format. Here, we follow the same procedure as in EXIOBASE 3, 
and therefore refer the reader to S6 of Stadler et al. (2018). The resulting 40 land use exten-
sions consist of land used by the EXIOBASE 3rx production sectors (F) and land directly 
allocated to households (F_hh).

2.8  Estimating land footprints

Due to the large size of EXIOBASE 3rx (e.g., the coefficient matrix (A) has 42,800 × 42,800 
data points), most of the arrays are saved in a sparse format in MATLAB to reduce disk stor-
age requirements. The sparse format database for one year is approximately 60 megabytes.

We used the emissions embodied in bilateral trade (EEBT) approach (Peters 2007, 2008) 
to do land use calculations using EXIOBASE 3rx rather than calculating impacts from 
the MRIO system directly. The main difference is that we do not account for intermedi-
ate demand of imports that go to industries to produce exports. Hence, a limitation is that 
imports that are used for intermediate production, that later end up as exported goods are 
not accounted for. However, as we are studying aggregate land embodied in trade, and not 
that resulting from a particular final demand, the EEBT approach is suitable as discussed in 
Peters (2007). The basic principles of the EEBT approach are explained in S12. Stadler et al. 
(2014)’s additional information explains the EEBT approach in detail.

2.9  Analyzing the effect of regional aggregation

To enable comparison of the pre-aggregated database and EXIOBASE 3rx for land use 
results, we aggregate the inter-industry flow matrix (Z), the final demand matrix (Y), 
the total land use of production (F), and land directly allocated to households (F_hh) to 
49 regions using a regional bridging (Additional file 2). Next, we calculate the coefficient 
matrix (A) and the land use multipliers (S) per monetary unit. We refer to this as the aggre-
gated database from now on. Note that we do not compare land use results of EXIOBASE 
3rx and EXIOBASE 3 directly as it would be difficult to distinguish the effect of regional 
disaggregation to effects arising from other changes (see Additional file 1: S1 for an over-
view of the differences in workflows between the databases). Two of the most prominent 
changes to the workflow are the mentioned updated trade processing and reconciliation, 
and re-processed and more detailed land use extensions. In addition, the land use dataset 
was newly established specifically for EXIOBASE 3rx.
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For comparing the land embodied in trade between the EXIOBASE 3rx and the aggre-
gated database, we define the aggregation error as the sum of the absolute difference of the 
traded land in question:

where T  is a three-dimensional array of land embodied in imports or exports with 
dimensions imports/exports ( q ) by trade partner ( r ) by product ( p ). s corresponds to 
the summed-over dimension(s) and n is the number of data points in the summed-over 
dimension(s). n varies according to the type of aggregation error in question. We exam-
ine aggregation errors of imports and exports of products, between regions, and specific 
product–region combinations. Hence, for, e.g., the product aggregation error of imports, 
we sum over q, r—exporting and importing countries. Similarly, for the aggregation error 
of exports of specific goods originating in specific countries, we sum over r—importing 
countries. Note that we exclude intra-RoW trade in EXIOBASE 3rx aggregated to 49 
regions for the sake of comparison with the aggregated database, where intra-RoW trade 
is part of domestic demand.

“Aggregation error” refers to the difference in results between those from one input–
output table and those from a pure aggregation of the same input–output table prior to 
calculations (as per literature, e.g., Gibbons et al. (1982)). It must be noted that input–
output tables are always estimates of actual transactions and the more disaggregated 
an input–output table is (especially in the case at hand where there is very poor sta-
tistical coverage of some countries) the higher the level of uncertainty of these trans-
actions. Most literature (e.g., Lenzen (2011)) point to the benefit of disaggregation for 
reducing the uncertainty of footprint calculations, but we do not explore that here. As 
such, it must be remembered that uncertainty related to disaggregation, and the concept 
of aggregation error are related, but different concepts. We expect, but cannot measure 
whether the accuracy of our results will increase by disaggregating EXIOBASE3, whilst 
we can measure the aggregation error between the disaggregated database and a pure of 
aggregation of the same database.

Using Eq. 3 we define the aggregation error score ∈s as the aggregation error divided 
by the export/imports of the region, product or product–region combination in the 49 
region version of EXIOBASE 3rx:

3  Results
The results of the construction process for EXIOBASE 3rx are available at https ://doi.
org/10.5281/zenod o.26544 60. Country SUTs are available as well as IOTs and land 
extensions. Furthermore, in Additional file  3 we provide compiled production, con-
sumption and trade-related results for land use. Here, we proceed with an analysis of 
these results, and the differences introduced by regional disaggregation.
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3.1  Trade comparisons

The added regional detail changes the trade structure of EXIOBASE 3rx compared to 
the aggregated database and EXIOBASE 3. In EXIOBASE 3, intra-RoW trade flows 
are treated as “domestic” flows, while they are treated as inter-country trade flows in 
EXIOBASE 3rx. In 2015 intra-RoW trade (as classified in EXIOBASE 3) is the largest or 
second largest export destination of each continental region (Table 1).

This has relevance to the regional disaggregation of EXIOBASE 3 for footprint analy-
ses both for the countries within the RoW region and for the trade partners importing 
from the RoW region. In the former case a footprint resulting from a demand for an 
imported good from, e.g., Thailand to the Philippines would be treated as domestic in 
EXIOBASE 3 with the land use (or emission) intensity equal to the RoW region, while in 
EXIOBASE 3rx the footprint is treated as imports using the land use intensity of Thai-
land, which can lead to highly differing results as discussed in the introduction. In the 
latter case, a final demand of imports from a RoW region with destination in a region 
outside the RoW region will in both EXIOBASE 3 and EXIOBASE 3rx be treated as an 
import, but the emission intensity will differ. In EXIOBASE 3 the RoW land use intensity 
of production is used, while in EXIOBASE 3rx the land use intensity of production of 
the region now disaggregated from the RoW region forms the basis of the footprint.

3.2  Land footprints

The cropland footprints per capita for all 214 regions in 2015 are presented in Fig.  2 
(see Additional file 1: S10 for figures on other land use types and Additional file 3 for 
per capita footprints for individual land use types and aggregated across all land use 
types). Monaco has the largest cropland footprint per capita (24,700 m2/cap) followed 
by Luxembourg (19,100 m2/cap) and the United Arab Emirates (9 100 m2/cap). The low-
est footprints are found in Timor-Leste (257 m2/cap), Bermuda (336 m2/cap), and Zan-
zibar (353  m2/cap). Large economies such as the United States (3620  m2/cap), Russia 
(5250 m2/cap), Germany (3260 m2/cap) and France (3330 m2/cap) have cropland foot-
prints per capita well above the global average of 2130  m2/cap, while those of China 
(1710  m2/cap) and India (1260  m2/cap) are below the global average. In general, the 
highest per capita footprints are in Europe, the Middle East, Eastern and Northwestern 
parts of Asia and a few scattered African countries. The import share of total cropland 
consumed highly varies between countries (see Additional file 3). With countries in the 
Middle East, some island states and Eastern parts of Asia, having import shares of 100%, 
while particularly several African countries import less than 5% of the land area needed 

Table 1 Percentage of intra-RoW region exports for year 2015

% of exports within region Rank 
export 
partners

RoW Asia and Pacific 22.2 1

RoW Europe 8.6 2

RoW Middle East 15.4 1

RoW America 26.2 1

RoW Africa 11.9 2
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to satisfy their cropland consumption. For EXIOBASE 3rx, the global import share of 
cropland consumption increased from 20.9% in 1995 to 42.7% in 2015.

The global consumption-based per capita forest footprint is 3650  m2, with the larg-
est values found for Finland (68,100 m2) and New Caledonia (49,300 m2), and smallest 
for Palestine (82.4 m2) and Yemen (146 m2). The global imported share of total forest 
consumption is 36.0%. The global per capita grazing land footprint is 3650 m2 with an 
import share of 21.3%. Mongolia (1,34,000 m2) and Botswana (97,500 m2) have the high-
est values and North Korea (99.5 m2) and Bangladesh (113 m2) have the lowest per capita 
values. The British Virgin Islands (1650 m2) and Australia (1500 m2) have the highest per 
capita infrastructure footprints, well above the global average of 185 m2. The total land 
use summed across all land types has grown by 1.6% from 1995 to 2015. On a per capita 
basis, global land use has decreased from 15 600 m2 ha/capita to 12 300 m2/capita (27%) 
from 1995 to 2015. This is driven by a moderate decrease in consumption-based land 
use in populous countries such as India, Brazil and the United States, and a stronger 
decrease in several African countries. Increases in countries such as China, Germany 
and the Netherlands partly offset the effect.

Overall there is a factor of 2.20 increase of land embodied in trade from 1995 to 2015. 
This increase is driven by a growth in exports from geographically large countries such 
as Russia, Australia and Brazil. China has largely single-handedly driven the global 
increase in imported land, from 2.3% of the global total in 1995 to 27.4% in 2015. At the 
same time, the global share of imported land has decreased particularly for Japan (9.5% 
in 1995 and 3.6% in 2015) and the United States (11.5% in 1995 and 8.4% in 2015).

3.3  Comparison of regional disaggregation

EXIOBASE 3rx shows global land embodied in trade as 25.8% of global land use, com-
pared to 24.2% in the aggregated database (Table 2) (For equivalent results for all coun-
tries in EXIOBASE 3rx, see Additional file  1: S13.) Comparing country-specific trade 
balances of land for the databases, there is consistency in which countries are net 

Fig. 2 Map of cropland footprints per capita for year 2015 for 214 countries. Unbalanced countries in dark 
gray (Comoros, Haiti, Liechtenstein, South Sudan and Sudan)
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importers and exporters, but there is a difference of up to 5.9% in the balance of land 
embodied in trade between the databases.

The top 20 products (global aggregation of results across all countries) ranked 
according to aggregation error of land embodied in imports are displayed in Table 3. 
Remembering that the impacts embodied in imports originating in the non-RoW 
regions are identical in the aggregated and disaggregated database, these results 
reflect the effect of disaggregation purely of the EXIOBASE 3 RoW regions. The land 
embodied in imports associated with “Products of forestry, logging and related ser-
vices (02)” is the single largest product group, with 66,10,000 km2 or 30.2% of total 
global land use embodied in imports. This product group is somewhat susceptible to 
regional aggregation error, with a summed difference between the aggregated and dis-
aggregated database of 6,60,000 km2 or 19.4% of the total aggregation error observed 
between the models. In contrast, for “Meat animals nec” and “Hotel and restaurant 
services (05) “the share of land use embodied in exports is only in the range of 1–2%, 
but the aggregation error of the product relative to the flow (shown by the “error 
score”) is much higher at 64% and 95% of the value of the estimated flow, respectively. 
This suggests a large degree of uncertainty due to regional aggregation in the aggre-
gated database. The last column of Table 3 shows that the aggregation can change the 
value of the flow by a factor of over five (“Copper ores and Concentrates”) where the 
value in the aggregated database is 17% of the corresponding value in EXIOBASE 3rx.

The aggregation error for land embodied in imports for regions sorted by regional 
error score (Table  4) shows that the countries with the largest scores, such as Aus-
tralia and Malta, have a low share of global imports, although the net effect of the 
aggregation error for the countries is significant. Countries with a low import share 
out of total consumption of land, such as Russia, Brazil and Australia (Table 2) have 
the largest aggregation errors. In addition, these countries stand out with a high pro-
portion of land originating in EXIOBASE 3 RoW regions. A large share of the regional 
aggregation error is centered in Asia due to Taiwan and Japan having relatively larger 
aggregation error shares than land import shares, combined with China dominating 
land imports (although the aggregation error is relatively lower).

Digging deeper into the land embodied in imports by also showing the traded 
product (Additional file 1: Table S1), we find that the six largest product- and region-
specific aggregation errors are due to imports for Taiwan, China and India. Together, 
they make up about 19% of global aggregation error of land embodied in imports. 
Asian countries dominate the top 20 list. We also notice that certain items, such as 
imports of “Hotel and restaurant services (55)” to China and “Meat animals nec” to 
Japan have significant aggregation error scores. The net effect of the aggregation can 
change results by up to an order of magnitude (“Chinese imports of Hotel and restau-
rant services (55)”).

By also including the origin region of the imported good, the concentration of the 
aggregation error around Asian regions and “Products of forestry, logging and related 
services (02)” becomes even more apparent (Additional file 1: S8). The total global aggre-
gation error is concentrated on a few flows, with the top 20 contributors to the error 
summing up to 25% of the global total error. 12 of the top 20 flows are imports originat-
ing in RoW Asia.
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Table 4 Land embodied in imports and aggregation error of 49 regions (2015)

Region Total land area 
of flow  (km2)

Share of global 
land area 
 (km2), %

Aggregation 
error  (km2)

Error score (ε) Share of total 
aggregation 
error, %

Difference 
between databases 
(100 is equal 
to no difference), %

AU 92,300 0.4 67,400 0.73 2.0 168

MT 3620 0.0 2050 0.57 0.1 141

BR 203,000 0.9 83,100 0.41 2.4 70

RU 350,000 1.6 143,000 0.41 4.2 69

FR 442,000 2.0 161,000 0.37 4.7 95

ZA 99,900 0.5 35,600 0.36 1.0 84

CH 54,400 0.2 18,000 0.33 0.5 112

GB 321,000 1.5 100,000 0.31 2.9 121

HR 10,000 0.0 3010 0.30 0.1 107

IN 614,000 2.8 183,000 0.30 5.4 107

ES 217,000 1.0 63,400 0.29 1.9 113

RO 32,300 0.1 9200 0.28 0.3 108

PT 127,000 0.6 34,900 0.27 1.0 87

LU 26,200 0.1 7030 0.27 0.2 99

BE 217,000 1.0 57,600 0.27 1.7 87

SI 14,200 0.1 3740 0.26 0.1 91

GR 48,600 0.2 12,700 0.26 0.4 99

TW 1,210,000 5.6 315,000 0.26 9.2 80

NO 71,700 0.3 16,900 0.24 0.5 97

TR 310,000 1.4 72,500 0.23 2.1 96

DK 53,200 0.2 12,200 0.23 0.4 102

LT 29,900 0.1 6730 0.23 0.2 84

NL 325,000 1.5 71,600 0.22 2.1 111

IT 351,000 1.6 75,200 0.21 2.2 99

DE 573,000 2.6 112,000 0.19 3.3 103

JP 834,000 3.8 160,000 0.19 4.7 117

IE 45,900 0.2 7890 0.17 0.2 110

HU 30,300 0.1 4930 0.16 0.1 97

WM 1,350,000 6.2 213,000 0.16 6.2 99

BG 14,600 0.1 2210 0.15 0.1 108

PL 114,000 0.5 16,800 0.15 0.5 97

WE 100,000 0.5 14,600 0.15 0.4 92

CY 4460 0.0 636 0.14 0.0 106

AT 78,000 0.4 10,900 0.14 0.3 101

US 1,950,000 8.9 252,000 0.13 7.4 110

KR 626,000 2.9 76,700 0.12 2.3 106

LV 30,200 0.1 3530 0.12 0.1 90

ID 639,000 2.9 73,800 0.12 2.2 107

CZ 48,000 0.2 5400 0.11 0.2 102

CN 6,360,000 29.1 677,000 0.11 19.8 98

EE 11,500 0.1 1180 0.10 0.0 98

SK 22,600 0.1 2280 0.10 0.1 105

SE 182,000 0.8 16,400 0.09 0.5 104

WF 530,000 2.4 46,700 0.09 1.4 100

CA 296,000 1.4 23,700 0.08 0.7 105

WA 1,580,000 7.3 100,000 0.06 2.9 100

MX 298,000 1.4 14,200 0.05 0.4 103

FI 284,000 1.3 5690 0.02 0.2 100

WL 622,000 2.8 12,200 0.02 0.4 101
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4  Discussion
4.1  Hotspots for aggregation errors of land embodied in trade

Countries such as China show sharp trends of rapid increases in imports in the later 
years, and as such also become the main importers of traded land (see Additional file 3). 
Results show that there is a need for the integration and calculation of a high level of 
regional detail in these countries’ trade partners to avoid regional aggregation errors. We 
find that the import aggregation errors of Asian countries such as China, India, Taiwan 
and Japan make up a large share of the global total error (Table 4). Although RoW Asia 
contributes to only 7.2% of global exported land, the contribution to the export aggrega-
tion error is 47.9% (Additional file 1: S8).

The effect of regional aggregation on land embodied in trade by products shows a 
large concentration of both land embodied in trade and aggregation errors around a 
handful of products (Table 3). The products are mostly part of the forestry and agricul-
tural sectors, with a few outliers in the service sectors such as “Hotels and restaurant 
services (55)”, “Other business services (74)” and “Real estate services (70)”. These outli-
ers are characterized by low shares of total land embodied in trade, but relatively larger 
shares of aggregation errors. The same is the case for some of the more disparate prod-
ucts groups (those in the not elsewhere classified groups). These later results indicate the 
need for also more detailed sectoral resolution (see below).

The regions and products prone to aggregation errors depend on the year chosen. We 
chose to present results for 2015 in this paper, as this is the most recently available data 
in EXIOBASE 3rx. A look into the aggregation errors summed together across the whole 
time series (Additional file 1: S8, and S9 for 2015) reveals that 37.4% of the export aggre-
gation error now comes from RoW Africa (27.1% in 2015), while RoW Asia is respon-
sible for 45.6% of the global total (47.9% in 2015). The import aggregation errors for 
regions show the same trends, except for Portugal that now ranks third when sorting 
by regions. The products most heavily affected by the aggregation throughout the time 
series show similar trends to the equivalent 2015 result, but even more concentrated 
around products of forestry, logging and related services (02) which accounts for 25.9% 
of the total aggregation error across the full time series (19.4% in 2015). Including the 
origin and destination of imports reveals that the top four flows, making up 12% of the 
total aggregation error, are “Products of forestry, logging and related services (02)” from 
RoW Africa to China, Portugal, India and France.

Compared to other works, Kastner et  al. (2014) found that MRIO studies on crop-
land embodied in Chinese trade diverged from studies using other methods. We find 
that China’s balance of land embodied in trade for all land types (Table 2) did not sig-
nificantly differ between the two levels of regional aggregation. Despite not finding an 
aggregation effect, we find a significant change in China’s balance of cropland embodied 
in trade from 1995 to 2015 (Additional file 1: S6). From 1995 to 2000 China was a net 
exporter of cropland, while from 2001 to 2015 there is a shift to becoming a net importer 

Table 4 (continued)
Sorted by aggregation error score. The error score is relative to the total value of the specific flow of imports. The share 
of total aggregation error refers to the aggregation error summed across all flows (i.e., global). The difference between 
databases shows the value of the flow in the aggregated database compared to that in EXIOBASE 3rx
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and increasingly so as we approach present time. Although our results use monetary 
values for the trade allocation, while studies using other methods typically use physical 
properties, the time trend we find should be interesting for future research looking at 
the deviations in results between methods.

Given that a few countries import a large share of globally traded land, we find it is 
particularly important to have their trading partners represented as individual regions 
in MRIOs. Similarly, key exporting regions not currently included, such as Argentina, 
should be represented, and large countries (such as China) can even be split into sub-
regions as suggested by Su and Ang (2010) to minimize aggregation errors.

4.2  Challenges and limitations

The inclusion of 214 countries in a single database comes with a trade-off in terms of raw 
data availability and uncertainty. Whilst country-specific land use, production, and trade 
data are used (for an overview of the regional data availability in the raw data, see Addi-
tional file 1: S2), a lot of data estimation is undertaken, especially for the countries not 
originally in the EXIOBASE dataset. For the 44 countries originally in the EXIOBASE 
3 dataset, it would be expected that the additional disaggregation of the rest-of-the-
world regions would improve accuracy. However, for the remaining countries, it must 
be expected that the uncertainty of individual country estimates are high. Especially 
when disaggregating small (and trade-exposed) countries the expectation of accuracy is 
low. It is common in all input–output studies (and all statistical data) to find a declining 
relationship between accuracy and volume (whether expressed as GDP, output, or key 
coefficients) (see for example (Lenzen et  al. 2010, Karstensen et  al. 2015, Wood et  al. 
2019)) for one reason because of the laws of error propagation (Imbeault-Tétreault et al. 
2013). Whilst further work could see the replacement of generic data with more coun-
try-specific data, it is still likely that the uncertainty levels of individual countries in the 
disaggregated database will be high, and it is anticipated that the further development 
of single-country national account consistent procedures are further developed in order 
to undertake county specific analysis (see, e.g., Edens et  al. (2015); Palm et  al. (2019); 
Hambÿe et al. (2018)).

In terms of empirical validation of results as presented, there are sudden jumps in 
per capita land footprint results, particularly for small economies such as Aruba, San 
Marino, Bermuda, the Cayman Islands and the British Virgin Islands (as can be seen in 
Additional file 1: S6). In addition to being small economies, several of these countries 
heavily rely on imports with import shares in the range of 95–98% of the total consump-
tion-based land footprints, except for the British Virgin Islands and the Cayman Islands 
where this value is 43.0% and 50.7%, respectively (see Additional file 1: S13). When there 
is a jump in land footprint, we do note that that there are sudden changes in the import 
structure for the specific years (see https ://oec.world /en/ (Simoes and Hidalgo 2011) 
for a visualization of trade data). Aruba has a drastic increase in imports of cattle from 
Sudan (2010), Bermuda and the British Virgin Islands import crude petroleum from 
Kazakhstan (2000–2003), San Marino imports raw fur skins from Russia (2006), while 
the Cayman Islands import soybeans from Paraguay (2001–2007). Drastic increases 
in imports of these specific products from countries with high use of land area per 
monetary output, combined with high import shares drastically change the per capita 

https://oec.world/en/
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footprint of these countries using the EEBT approach. The EEBT approach however, 
does not allow us to determine whether these imports are used for domestic consump-
tion, or intermediate production that is later used for exports and therefore should not 
be counted in that country’s consumption-based footprints.

In terms of data reconciliation issues, most of the challenges in building EXIOBASE 
3rx were related to the SUT balancing where there were contradictions between the 
initial estimates and the macroeconomic data. Several of these issues were resolved by 
changing options in the balancing routine that increased the accepted level of deviation 
(which was set to a cap in the balancing) from the initial estimated SUTs. If this did 
not work, we used initial technical coefficient estimates from EXIOBASE 2. In several of 
the remaining unbalanced cases (Additional file 1: S5), the issue is negative value added 
from the macroeconomic data specifically for International Standard Industrial Classifi-
cation C and E from the UN National Main Aggregates Database. Resolving this issue is 
a work in progress. There are a total of 151 cases with a non-optimal solution in the SUT 
balancing over the time series (3 cases for year 2015). Data for these cases are set to zero 
and sum up to 0.15% of global GDP through the time series, hence it should not signifi-
cantly influence the overall results. To resolve the balancing issues would require more 
detailed and reliable raw data, which again would manifest in the balancing routine devi-
ating less from the initial estimated SUTs.

Setting the unbalanced countries to zero lead to a slight imbalance in land footprint 
results (see Table 2). This is one of several ways of dealing with such imbalances. In Eora, 
this has been handled by compiling the unbalanced regions in a Rest-of-the-world region 
(Lenzen et al. 2013). As setting the values of the environmental extensions matrix (F) to 
zero for an unbalanced country A means neglecting the land use embodied in imports of 
a country B from country A, there is a slight underreporting of land use in EXIOBASE 
3rx. In 2015, Puerto Rico and the Dominican Republic are the countries whose total land 
footprints are affected the most by this, with an underreported footprint of 0.86%. For 
the aggregated database this effect has different distributional impacts as it affects all 
countries that import from the RoW region that country A is aggregated to. In addition, 
it affects the domestic part of the RoW region’s footprint as there is not a one-to-one 
relationship between the output of country A and the land use per unit of output (S). 
RoW America’s land footprint is affected heaviest by this with a change of 0.25%. In the 
49-region version of EXIOBASE 3rx, the change is largest in Latvia (0.08%). Resolving 
the issue with unbalanced regions in EXIOBASE 3rx is a work in progress.

Using the EEBT approach, we do not distinguish between intermediate and final use 
of traded products. The approach fits with the scope of this paper as we look at the land 
embodied in aggregated imports and exports. The EEBT approach is also argued to 
be more relevant for global trade-related policy (Peters 2007). However, when allocat-
ing impacts to categories of final demand, the EEBT approach will give different results 
compared to the Leontief approach due to different allocation of impacts, although the 
global total impact is the same. For a country, imported goods that are used for interme-
diate production, and later exported are in the EEBT approach accounted as part of the 
imported footprint, while in the MRIO approach, they are not. The implications of this 
are discussed in Peters (2007). The extent of the difference between the two approaches 
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is unexplored in this paper, although previous studies indicate that this difference could 
be significant (Su and Ang 2011).

In terms of land use data, other types of area use such as ocean are sometimes included 
in land use studies (e.g., Weinzettel et al. (2013)). This could alter the regional results, 
the land embodied in trade, and most likely the hotspots for large aggregation errors, 
through, e.g. consumption of fish (Weinzettel et  al. 2013). It is important to be aware 
that the effects due to regional aggregation are sensitive to the types of land included in 
the study. Similarly, the picture would likely look different in terms of regions and sec-
tors sensitive to aggregation errors when studying other types of environmental impacts. 
For example de Koning et  al. (2015) found that regional aggregation had small effects 
on overall carbon and material footprints. Bouwmeester and Oosterhaven (2013) on the 
other hand find large, and what they refer to as unacceptable aggregation errors for par-
ticularly water use, but also for  CO2 emissions, although their regional aggregation is 
more drastic with aggregating 43 regions to five and two regions. The deviating conclu-
sions on the effect of regional aggregation in other papers suggest that there is still need 
for further research on both the underlying causes of differences in these results, as well 
as identifying regions that are sensitive to aggregation errors. Although de Koning et al. 
(2015) look at different indicators, our findings coincide in the sense that when looking 
at the footprint of a country, the net effect of a regional aggregation is not drastic, but 
when exploring products traded and trade partners in more detail we find large effects of 
aggregation. This could also manifest in larger deviations when aggregating to very few 
regions, as in Bouwmeester and Oosterhaven (2013).

4.3  Further work

The results at hand are the first published results using EXIOBASE 3rx. We restrict 
our scope to the effect of regional aggregation of land use embodied in trade. However, 
with the limitations related to the EEBT approach and unbalanced countries in mind, 
there is still unexplored potential in using the database for land use studies in its current 
form. Firstly, there are multiple land use extensions available, which allows for study-
ing different land types embodied in trade. Secondly, land use embodied in trade can be 
studied on a sectoral level as the database includes 200 products harmonized across all 
regions. Thirdly, the database is a time series from 1995 to 2015 which allows for study-
ing the drivers of land use in form of panel regressions or similar methods. This creates 
opportunities for following up literature findings that suggest some degree of correlation 
between income and land use (Weinzettel et al. 2013; Ivanova et al. 2016). Panel regres-
sion studies using MRIO time series data also enable predictions into the future, which 
could help overcome the retrospective scope that is identified as a limitation of MRIO 
studies, which again could increase policy relevance (Axtell et al. 2001).

Currently only land extensions are processed for EXIOBASE 3rx. However, adding 
other environmental extensions to the database is a work in progress. More immediately, 
we chose land use as it is a simple and key indicator of agricultural related impacts. The 
application of biodiversity characterization factors (Verones et al. 2017) and net-primary 
productivity (Kastner et al. 2015; Weinzettel et al. 2019) are simple extensions to obtain 
more policy-relevant work. Furthermore, the correlation (Silva Simas et al. 2017) of land 
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use with other agricultural impacts such as blue water consumption (Lutter et al. 2016) 
and eutrophication (Hamilton et al. 2018) gives a good basis for further extension.

Regarding resolution, the sectoral resolution in EXIOBASE is one of the most detailed 
in the available MRIOs (Steen-Olsen et al. 2014). However, despite the comparably high 
sectoral resolution of EXIOBASE 3rx, the sectoral resolution is a main point of criticism 
and source of error of land use studies using MRIO (Bruckner et  al. 2015; Weinzettel 
et  al. 2013; Steen-Olsen et  al. 2012). Disaggregation of sectors is argued by Weinzet-
tel et al. (2014) to be an important future development of MRIOs, and can replace the 
hybrid approaches applied to overcome this limitation today. Already we are seeing the 
linking of detailed FAO production and use data to both aggregated and disaggregated 
MRIO tables (Weinzettel et  al. 2019) and even the construction of country-specific 
physical input–output tables (Bruckner et al. 2019).

In terms of methods, there is further work on expanding the cross-entropy model 
(Többen and Schröder 2018) used for reconciling the bilateral trade data with main 
aggregates of national accounts and estimates of product output, first, to the balancing 
of the SUTs and, later, to the simultaneous reconciliation of bilateral trade, SUTs and the 
physical extensions. The main challenges for the practical implementation of such a con-
cept are the computational requirements due to the enormous size of the database (see 
the method section for a brief overview of the size of EXIOBASE 3rx). However, recent 
theoretical work on topological transformations (Rodrigues et al. 2016) and maximum 
entropy models to reconcile data in physical and monetary units simultaneously (Töb-
ben 2017) constitute first theoretical steps to solve this issue.

5  Conclusion
With divergence in environmental results between MRIOs hampering the policy rele-
vance of MRIO studies, it is important to both develop more detailed models, and to get 
a systematic understanding about the underlying sources of these differences. We have 
developed a regional extension of EXIOBASE 3 called EXIOBASE 3rx and studied the 
effect of regional aggregation on land use embodied in trade by comparing results to an 
aggregated version of the same database consisting of 49 regions. Whilst the disaggre-
gated database is experimental in that a lot of structural economic data are estimated, 
country-specific data on agricultural and resource output, as well as trade are included. 
We find that the regional aggregation error for land use embodied in imports on a sec-
toral level is highly concentrated on sectors with high biomass demand, such as forestry, 
meat from animals, wood products and hotels and restaurant services. The effect on 
regions shows that the balance of land embodied in trade differs with up to 6% between 
the aggregate database and EXIOBASE 3rx, while the net aggregation error of land 
embodied in imports for some of the 49 EXIOBASE regions differ up to 68% between 
the databases. The largest absolute aggregation errors for land embodied in imports are 
found for Asian imports particularly originating in RoW Asia and RoW Africa.

Our findings have two important implications regarding the use of MRIOs for land 
use studies. Firstly, regions in Asia and Africa should be represented in detail, and 
higher sectoral disaggregation is necessary for a handful of key sectors. Secondly, we 
suggest that MRIO developers are aware of the potentially significant effects of regional 
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aggregation and build MRIOs that find the right balance between number of regions and 
sectors for their studies, while at the same time acknowledging the potential uncertainty 
introduced by assumptions aimed at closing data gaps in raw data. Further research is 
needed to identify key sectors and regions vulnerable to aggregation errors. If these are 
found to converge across environmental and socioeconomic extensions, MRIO systems 
can be built that find the right level of detail without becoming unnecessarily large. We 
believe that this is an important step in finding the sources of intra-MRIO result discrep-
ancies and could increase the policy uptake of MRIO studies.
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