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1  Introduction
There are many economic theories associated with the business cycle (for example, the 
real business cycle theory (RBC), the dynamic stochastic general equilibrium model 
(DSGE), Goodwin’s growth-cycle model, the Harrodian model, the Kaleckian model, 
and others), but one of the most fruitful theories, investigated by many authors since 
its first publications, is certainly the Samuelson’s business cycles. In the last decades the 
seminal work of Samuelson (1939) inspired many scholars in the study of the dynamics 
related to this model, as well as to its various modifications.

There are recent contributions related to smooth system dealing with many countries 
or introducing some delay (see e.g. Dassios et al. (2014), Dassios and Zimbidis (2014), 
Dalla and Varelas (2016), Dassios and Devine (2016), Kostarakos and Kotsios (2017)), 
as well as papers related to smooth or piecewise smooth variants. In fact, although very 
simple and proposed many years ago, the Samuelson model still provides answers and 
rationales to the problem of the business cycles. On the same line, many scholars pro-
posed similar systems, both in continuous time and in discrete time, as well as models 
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related to smooth or piecewise smooth variants. For example, we can appreciate Puu 
et  al. (2005), Westerhoff (2006), Hommes (1991), Puu (1989, 1997, 2003), Bischi et  al. 
(2019), Rosser (2000). Among the recent works see e.g. Westerhoff (2006), Dassios and 
Baleanu (2018), Dassios (2018), Barros and Ortega (2019), Ortega and Barros (2020). In 
particular, the last two papers mentioned above inspired our work. Our goal here is to 
reconsider the original model and some simple modifications of it, showing that these 
may represent the dynamics of business cycles.

We first recall that the original Samuelson’s model, with constant governmental 
expenditure, which is described by a linear second-order difference equation, is capable 
to produce oscillations converging to the equilibrium value of the national income for 
different values of the parameters. We also consider the delayed version of Samuelson’s 
model presented in Barros and Ortega (2019), which is described by a linear third-order 
difference equation. It also reveals its capability to produce oscillations converging to 
the equilibrium value, but for a smaller set of values for the parameters. Moreover, in 
order to describe a more realistic situation, we propose a simple nonlinear reformulation 
of the original Samuelson’s model, with non constant governmental expenditure, and 
maintaining the delayed version presented in Barros and Ortega (2019). Our assumption 
on the governmental expenditure is that at each period it depends on some fixed costs 
plus a bounded quantity proportional to the income of the previous period. This simple 
nonlinear version of the Samuelson’s model also evidences its ability to represent oscilla-
tions converging to the equilibrium value, although these may coexist with other global 
phenomena.

After this introduction, the rest of the paper is organized as follows. In Sect.  2 we 
reconsider the classical Samuelson’s model and recall how its stability region is obtained 
depending on the two parameters, namely multiplier and accelerator, and give also its 
explicit analytic solution. In Sect.  3 we consider the delayed version of Samuelson’s 
model presented in Barros and Ortega (2019). In that work the authors only determine 
the existence of the equilibrium point. Here we give the analytical description of its sta-
bility region, showing that it is in fact mainly associated with oscillatory dynamic behav-
ior. In Sect.  3 we propose our simple nonlinear reformulation of the delayed version 
of Samuelson’s model obtained introducing non constant governmental expenditure. 
The resulting nonlinear third-order difference equation has an attracting equilibrium 
for a wide region of values of the parameters, numerically detected. Some simulations 
show that the dynamics may converge to the equilibrium via oscillatory behavior, being 
accompanied by coexisting global phenomena which are related to the basin of attrac-
tion of the equilibrium. Section 4 concludes.

2 � Method
2.1 � Original Samuelson’s model

The original model by Samuelson is based on the following assumptions.
Assumption (A). National income Tk at time k is given by the sum of three elements: 

consumption Ck , private investment Ik and governmental expenditure Gk:

(1)Tk = Ck + Ik + Gk
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Assumption (B). Consumption Ck at time k depends on the past income and on marginal 
tendency to consume, modelled by a parameter c1 , which is the multiplier coefficient, 
where 0 < c1 < 1:

Assumption (C). Private investment Ik at time k depends on consumption changes and 
on the accelerator factor b, where b > 0 . Consequently, Ik depends on national income 
changes:

Assumption (D). Governmental expenditure Gk at time k remains constant, G.
Hence, the national income is determined by the following second-order linear difference 

equation:

which, by defining xk = Tk , yk = Tk+1 = xk+1, leads to the 2D system

whose fixed point is given by x = y = G
1−c1

, that is:

The stability is determined by the roots of the characteristic polynomial:

which are given explicitly as follows:

The stability occurs iff both eigenvalues are inside the unit circle. The stability region as a 
function of the two parameters is determined by the conditions P(1) = 1− c1 > 0, which 
is always satisfied, P(−1) = 1+ c1(1+ 2b) > 0, which is satisfied for b > − 1

2
− 1

2c1
 and 

P(0) < 1, which is satisfied for bc1 < 1 . Thus, for any given 0 < c1 < 1 and b > 0, the 
system is stable for 0 < b < 1

c1
. Inside the stability region the eigenvalues may be real or 

complex. From the discriminant � = c2
1
(1+ b)2 − 4c1b = c1(c1(1+ b)2 − 4b) we have 

that the roots are complex conjugate when � < 0, that is, for any fixed value of c1 ∈ (0, 1) 
the roots are complex conjugate for b−(c1) < b < b+(c1) where

Notice that the two branches meet at c1 = 1 giving b−(1) = b+(1) = 1, so that for any 
fixed value of c1 ∈ (0, 1) at the bifurcation related to b = 1

c1
 the fixed point is a center 

(2)Ck = c1Tk−1

(3)Ik = b(Ck − Ck−1) = c1b(Tk−1 − Tk−2)

(4)Tk+2 − c1(1+ b)Tk+1 + c1bTk = G

(5)
{

xk+1 = yk
yk+1 = −bc1xk + c1(1+ b)yk + G

(6)T ∗ =
G

1− c1

(7)P(�) = �
2 − c1(1+ b)�+ bc1 = 0

(8)s1 =
c1(1+ b)+

√
c2
1
(1+ b)2 − 4c1b

2
, s2 =

c1(1+ b)−
√

c2
1
(1+ b)2 − 4c1b

2

(9)b−(c1) =
2− c1 − 2

√
1− c1

c1
< 1, b+(c1) =

2− c1 + 2
√
1− c1

c1
>

1

c1
> 1
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and for b > 1
c1

 it is a repelling focus. In Fig. 1 we show in color the stability region in the 
plane (c1, b), in yellow the region in which the fixed point is a stable focus, in orange the 
region in which it is a stable node.

Since the system in (4) is linear, we can write in explicit form its solution, in the con-
sidered range c1 ∈ (0, 1) and b < 1

c1
 in which the fixed point is stable. As we know from 

elementary calculus of difference equations (see. e.g. Gumowsky and Mira (1980), Elaydi 
(2005), only to cite a few) the second-order difference equation in (4) depends on two 
arbitrary constants which are determined by using the initial conditions, say T0 and T1 
for k = 0 and k = 1 , respectively. Then, the solution is given for any k,  i.e. Tk for k ≥ 2, 
by the general solution of the homogeneous equation plus a particular solution, which 
in our case is simply the constant solution, i.e. the fixed point T ∗ = G

1−c1
. The solution 

of the homogeneous equation depends on the kind of eigenvalues, real or complex 
conjugate. When the eigenvalues s1 and s2 are real and distinct (i.e. for 0 < c1 < 1 and 
0 < b−(c1) < 1 , orange region in Fig. 1), then the solution, for k ≥ 2, is given as follows: 

where

Clearly, given the values of Tk , for k ≥ 2, the other variables, which depend on Tk , are 
easily obtained from their definitions:

that is:

(10)Tk = β1s
k
1 + β2s

k
2 + T ∗

(11)β1 =
−s2(T0 − T ∗)+ (T1 − T ∗)

s1 − s2
, β2 =

s1(T0 − T ∗)− (T1 − T ∗)

s1 − s2

(12)
Ck+1 = c1Tk

Ik+2 = c1b(Tk+1 − Tk)

Fig. 1  In color the stability region of the fixed point T ∗ = G
1−c1

 is shown. In the yellow (resp. orange) region 
the eigenvalues are complex conjugate (resp. real)



Page 5 of 15Tramontana and Gardini ﻿Economic Structures            (2021) 10:9 	

from the initial conditions T0 and T1 for k = 0 and k = 1 , respectively, we have

and

When � = 0 (i.e. for 0 < c1 < 1 and b = b−(c1) ) there are two coincident real roots 
s1 = s2 = s where s = c1(1+b)

2
 and then the general solution Tk , for k ≥ 2, becomes as 

follows:

where

Differently, when the eigenvalues s1 and s2 are complex conjugate ( � < 0 ), that is for 
0 < c1 < 1 and b−(c1) < b < 1

c1
 (yellow region in Fig. 1), with:

having modulus 
√
c1b so that

then the general solution Tk , for k ≥ 2, which is spiraling around the fixed point, 
becomes as follows:

where

The other variables Ck and Ik , which depend on Tk , are easily obtained from their defini-
tions given in (12).

This original system by Samuelson has been considered also recently in Ortega and 
Barros (2020), where the authors claim to give the explicit solutions for Tk (and also 
Ck and Ik). However, their solution is not correct, since it does not correspond to the 

(13)
Ck+1 = c1β1s

k
1 + c1β2s

k
2 + c1T

∗

Ik+2 = c1bβ1(s
k+1
1

− sk1)+ c1β2(s
k+1
2

− sk2)

(14)
C1 = c1T0

I2 = c1b(T1 − T0)

(15)
C2 = c1T1

I3 = c1b(T2 − T1)

(16)Tk = (β1 + β2k)s
k + T ∗

(17)β1 = (T0 − T ∗), β2 =
(T1 − T ∗)− s(T0 − T ∗)

s
, s =

c1(1+ b)

2
.

(18)
s1 =

c1(1+ b)+ i

√
4c1b− c2

1
(1+ b)2

2
, s2 =

c1(1+ b)− i

√
4c1b− c2

1
(1+ b)2

2
= s1

(19)s1 =
√
c1b(cosα + i sin α), s2 =

√
c1b(cosα − i sin α), cosα =

c1(1+ b)

2
√
c1b

(20)Tk = (
√

c1b)
k(β1 cos(kα)+ β2 sin(kα))+ T ∗

(21)β1 = (T0 − T ∗), β2 = −
cosα

sin α
(T0 − T ∗)+

(T1 − T ∗)
√
c1b sin α
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one given above, and there is no discussion with respect to the eigenvalues, complex 
conjugate or real (distinct or coincident).

We have so proved the following

Proposition 1  The Samuelson’s model defined in (1), (2) and (3) with constant gov-
ernmental expenditure  Gk = G is economically meaningful for 0 < c1 < 1 and 
b > 0. The fixed point T ∗ = G

1−c1
 is attracting for 0 < c1 < 1 and 0 < b < 1

c1
. In par-

ticular, it is an attracting node for  0 < b <
2−c1−2

√
1−c1

c1
< 1, an attracting focus for 

2−c1−2
√
1−c1

c1
< b < 1

c1
.  The analytic solution of the equation given in  (4) as a function 

of two arbitrary initial conditions T0 and T1 for  k = 0 and k = 1,  respectively, are given 
in  (10), (11) when the eigenvalues (8) are real and distinct, in (16) and (17) when the 
eigenvalues are real and coincident, in (20) and (21) when the eigenvalues are complex 
conjugate. The other variables Ck and Ik are obtained from their definitions given in  (12).

3 � Results and discussion
3.1 � Delayed Samuelson’s Model and stability analysis

The reformulated delayed version of Samuelson’s model presented in Barros and Ortega 
(2019) is based on the following assumptions:

Assumption (1) is equivalent to Assumption (A). National income Tk at time k equals 
to the sum of three elements: consumption Ck , private investment Ik and governmental 
expenditures assumed constant G (as in Assumption (D)):

Assumption (2). Consumption Ck at time k is a linear function of the incomes of the two 
preceding periods:

where c1 and c2 are positive constant, c1 > 0 , c2 > 0 , and 0 < c1 + c2 < 1 . The govern-
mental expenditures G in the model by Barros and Ortega (2019) are included in the 
consumption Ck , but since these are assumed constant, it does not differ from assuming 
them in the income Tk .

Assumption (3) is equivalent to Assumption (C). Private investment Ik at time k, 
depends on consumption changes and on the positive accelerator factor b > 0 :

so that we get the following equation:

Summarizing, by using (22), (23) and (25) the national income is determined via the fol-
lowing third-order linear difference equation:

or, equivalently,

(22)Tk = Ck + Ik + G

(23)Ck = c1Tk−1 + c2Tk−2

(24)Ik = b(Ck − Ck−1)

(25)Ik = bc1Tk−1 + b(c2 − c1)Tk−2 − bc2Tk−3

Tk − c1(1+ b)Tk−1 − [c2 + b(c2 − c1)]Tk−2 + bc2Tk−3 = G
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Setting Tk = T ∗ constant, from (26) we have the fixed point, given by

and under the assumption on the parameters (being 0 < c1 + c2 < 1) it is always positive 
and unique.

Notice that for c1 + c2 = 1 the fixed point becomes infinite and for c1 + c2 > 1 it is 
T ∗ < 0, so that the condition c1 + c2 ≥ 1 can be considered unfeasible, and we assume the 
constraint 0 < c1 + c2 < 1, which, as we shall see, corresponds to the first condition for the 
stability region (associated with an eigenvalue equal to +1).

So it is now interesting to investigate the stability of the fixed point, as a function of the 
parameters (all positive), that is, under the given constraints:

Let us introduce the three-dimensional map, by defining xk = Tk , 
yk = Tk+1 = xk+1, zk = Tk+2 = yk+1, so that we have the 3D linear system

and in the 3D space X = (x, y, z) the fixed point is

The coefficient matrix is given by

so that we recover the previous result, that is, from det (I − A) = 1− (c1 + c2) we have 
the condition on the invertibility of (I − A) , given by c1 + c2 �= 1. The constant G is just a 
scaling factor, so it could be assumed G = 1 , and, as in the original Samuelson’s model, it 
only influences the value of the fixed point T ∗.

The stability of the fixed point depends on the eigenvalues of the matrix A, that is, X∗ is 
attracting if all the eigenvalues (say (ξ1, ξ2, ξ3) ) of A are smaller than 1 in absolute value. The 
eigenvalues are given by the roots of the characteristic polynomial:

where

(26)Tk+3 − c1(1+ b)Tk+2 − [c2 + b(c2 − c1)]Tk+1 + bc2Tk = G

(27)T ∗ =
G

1− (c1 + c2)

(28)b > 0, 0 < c1 + c2 < 1

(29)





xk+1 = yk
yk+1 = zk

zk+1 = −bc2xk + [c2 + b(c2 − c1)]yk + c1(1+ b)zk + G

(30)X∗ = (T ∗
,T ∗

,T ∗)

(31)A =




0 1 0

0 0 1

−bc2 [c2 + b(c2 − c1)] c1(1+ b)




(32)P(�) = �
3 + a1�

2 + a2�+ a3 = 0

(33)
a1 = −c1(1+ b) = −(ξ1 + ξ2 + ξ3)

a2 = bc1 − c2(1+ b) = +(ξ1ξ2 + ξ1ξ3 + ξ2ξ3)

a3 = bc2 = −ξ1ξ2ξ3
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In a recent work (Gardini et al. 2021), it is shown that assuming that P(0) = a3 satisfies 
|a3| < 1, the stability conditions are as follows:

In our case, the determinant is Det(A) = P(0) = a3 = bc2 > 0 so that it is always posi-
tive, and the condition reduces to bc2 < 1. So we have to consider the two conditions 
0 < c2 <

1

b
 and 0 < c2 < 1− c1, that is:

Substituting the expressions in (33) in conditions (34) we obtain:

The equalities in the three conditions given in (36), coupled with (35), give the boundary 
of the stability region in the parameter space. Condition (i) is associated with an eigen-
value equal to 1, condition (ii) is associated with an eigenvalue equal to −1 , and condi-
tion (iii) with complex conjugate eigenvalues in modulus equal to 1. It follows that for 
any fixed value of the parameter b, b > 0 , we can have the boundaries of the stability 
region determined (besides ci > 0 ) by the conditions in (35) and

where

The boundaries of the region determined by the three conditions (i–iii) are given by 
curves in the parameter plane (c1, c2) of equation:

Let us first prove the following

Proposition 2  For any b > 0 it holds that:

(34)

(i) : P(1) = 1+ a1 + a2 + a3 > 0

(ii) : P(−1) = 1− a1 + a2 − a3 > 0

(iii) : 1− a2 − a23 + a1a3 > 0

(35)0 < c2 < min

{
1

b
, 1− c1

}

(36)

(i) 1− c1 − c2 > 0

(ii) 1+ (1+ 2b)(c1 − c2) > 0

(iii) b2c22 − c2[(1+ b)(1− bc1)] − (1− bc1) < 0

(37)

(i) c2 < 1− c1

(ii) c2 < c1 +
1

1+ 2b

(iii) c2 < c̃2(b, c1)

(38)c̃2(b, c1) =
(1+ b)(1− bc1)+

√
(1+ b)2(1− bc1)2 + 4b2(1− bc1)

2b2

(39)

(r1) c2 = 1− c1

(r2) c2 = c1 +
1

1+ 2b

(r3) c2 = c̃2(b, c1)
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the three curves of equation c2 = 1

b
 (i.e. Det(A) = a3 = 1), (r2) and (r3) always intersect in 

the point (c1, c2) = ( 1+b
b(1+2b)

,
1

b
) =: R;

the curve (r3) always intersects the c1-axis in the point (c1, 0) = ( 1
b
, 0);

the two straight lines (r1) and (r2) always intersect in the point (c1, c2) = ( b
1+2b

,
1+b
1+2b

) =: Q;

at b = b∗, b∗ = 1+
√
5

2
≃ 1.618033989, it is R = Q; for b < b∗ it is 

c2(R) = 1

b
> c2(Q) = 1+b

1+2b
; for b > b∗ it is c2(R) = 1

b
< c2(Q) = 1+b

1+2b
.

Proof  The straight lines c2 = 1

b
 and (r2) are intersecting in (c1, c2) = ( 1+b

b(1+2b)
,
1

b
), Set-

ting c2 = 1

b
 in condition (iii) in (36) it comes immediately that (r3) holds iff c1 = 1+b

b(1+2b)
. 

The intersection point of the two straight lines (r1) and (r2) also comes soon by direct 
computation. Finally by direct computation we have 1b � 1+b

1+2b for b � b∗. �

To comment the stability region of the fixed point, let us distinguish the two cases 
0 < b ≤ 1 and b > 1, which have different properties in the parameter plane (c1, c2).

(I) 0 < b ≤ 1

For b ≤ 1 the triangle bounded by the line c2 = 1− c1 (intersecting the axes in the points 
(0, 1) and (1, 0)) is below the line c2 = 1

b
≥ 1, having a contact point in (0, 1) only for b = 1.

The segment of (r1) connecting the two points (1, 0) and (0, 1) gives the boundary of the 
region satisfying 0 < c1 + c2 < 1, in which condition (i) is satisfied.

The segment of (r2) connecting the two points ( −1

1+2b
, 0) and (0, 1

1+2b
) is inside the triangle 

bounded by the segment of c2 = 1− c1 so that it is an active constraint. Notice that the 
point (0, 1

1+2b
) approaches (0, 1) as b tents to zero. (That is, increasing b from zero the sta-

bility region decreases, or, equivalently, decreasing b from 1 the stability region increases).
From the properties given in Proposition 2, the curve in the first quadrant of the param-

eter plane (c1, c2) of equation c2 = c̃2(c1) is always external to the stability region, which is 
only bounded by segments of the straight lines (r1) and (r2). Some examples are shown in 
Fig. 2.

It follows that changing the parameters inside the stability region, either it is crossed the 
boundary at which the fixed point becomes infinite (segment of (r1) ), or it is crossed the 
boundary at which one eigenvalue is equal to −1 (segment of (r2)).

(II) b > 1

Increasing b from 1, the curve of equation c2 = c̃2 moves in the opposite direction (since 
now it is 1

b
< 1 ), intersecting the segment of (r1) on the boundary of the stability region as 

long as it holds 1 < b < b∗ , examples are shown in Fig. 3a, b, while for b > b∗ the straight 
line (r1) is external to the stability region, whose boundary is given by a segment of (r2) and 
a segment of (r3), an example is shown in Fig. 3c.

For the characteristic polynomial in (32) it is known (see e.g. Gardini et al. (2021)) that 
considering the discriminant

then for D < 0 three real roots exist, at D = 0 two real roots merge and for D > 0 there 
are two complex conjugate roots and a real one. By using the expressions given in (33) 

(40)D = 4a32 − a21a
2
2 + 4a31a3 − 18a1a2a3 + 27a23
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we have numerically evaluated the discriminant D and shown the graph of D = 0 in 
Figs. 2, 3. As we can see, the stability region is mainly associated with a pair of complex 
eigenvalues, and for b > b∗ it is always so.

Notice that for a specific set of parameters we can numerically evaluate the eigenval-
ues and then, since the model is linear, we can easily write the explicit solution analyti-
cally as a functions of three initial conditions.

As an example, considering the values b = 1.5 , c1 = 0.62, c2 = 0.1 which is close to the 
boundary of (r3), the fixed point T ∗ = G

1−(c1+c2)
= 3.571429G is attracting, with one real 

negative eigenvalue and two complex conjugate ones, so that we have oscillations con-
verging to the equilibrium, as shown in Fig. 4.

As a final remark, we can state that the delayed version of Samuelson’s model reduces 
the stability region of the fixed point.

3.2 � Nonlinear Samuelson’s model

Let us come back to the original Samuelson’s model, where the governmental expendi-
ture may be not constant, Gk , and combine this with the delayed version of Samuelson’s 

Fig. 2  In color the stability region of the fixed point T ∗ for 0 < b ≤ 1 in the parameter plane (c1, c2). In a at 
b = 1 . In b at b = 0.8 . The black curve corresponds to the discriminant D = 0 given in (40). In the orange 
region a pair of complex eigenvalues exists. In the yellow region the three eigenvalues are real

Fig. 3  In color the stability region of the fixed point T ∗ for b > 1 is shown in the parameter plane (c1, c2). In 
a at b = 1.2 , the black curve denotes the discriminant D= 0 given in (40). In b at b = b∗ . In c at b = 3 . In the 
orange region a pair of complex eigenvalues exist. In the yellow region the three eigenvalues are real
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model by Barros and Ortega (2019), by using Gk in (22) in place of a constant value, 
keeping all the other assumptions as in the delayed model of the previous section.

The governmental expenditure Gk may consist of a constant amount G (which 
includes, for example, fixed essential costs and other fixed expenses), and a part which 
depends on the income of the previous period, taking values in a bounded range, for 
example given by γ arctan ( Tk−1 ), where γ is a parameter governing the width of the 
range, thus leading to our Assumption (4):

This assumption is consistent, for instance, with the well known Wagner’s hypothesis 
(Wagner 1890). According to this there is a causation that runs from economic growth 
to growth in government expenditure. This hypothesis has been tested empirically in 
several countries (see Gemmell 1990; Ansari 1993; Courakis et  al. 1993; Dollery and 
Singh 1998; Peacock and Scott 2000, among the others). Thus, we get the following non-
linear equation

leading to the three-dimensional nonlinear system

The fixed point of the nonlinear system is now given by the solution of the following 
nonlinear equation:

and it is easy to see that it can be considered as the intersection point of an increas-
ing function ( γ arctan(T ∗) ) with a straight line ( T ∗(1− c1 − c2)− G ) with positive slope 
and negative offset, as qualitatively shown in Fig.  5 (where the function γ arctan(T ∗) 

(41)Gk = G + γ arctan(Tk−1)

Tk+3 − c1(1+ b)Tk+2 − [c2 + b(c2 − c1)]Tk+1 + bc2Tk = G + γ arctan(Tk+2)

(42)





xk+1 = yk
yk+1 = zk

zk+1 = −bc2xk + [c2 + b(c2 − c1)]yk + c1(1+ b)zk + γ arctan(zk)+ G

(43)T ∗(1− c1 − c2)− G = γ arctan(T ∗)

Fig. 4  In a trajectory of the third-order difference equation in the plane (x , y) = (Tk , Tk+1) for b = 1.5 , 
c1 = 0.62, c2 = 0.1 , G = 1. In b the versus time trajectory of Tk for 2 < k < 150
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is shown in red, while in green and in blue are shown two versions of the function 
( T ∗(1− c1 − c2)− G).

Thus, we may expect a unique fixed point in the positive side, as shown by the blue 
circle in Fig. 5, which is an intersection of the red curve with the blue straight line, but it 
is also possible to have three fixed points, as shown by the green circles in Fig. 5 which 
are the intersections of the red curve with the green straight line. However, this second 
situation may be considered unfeasible, since the two more fixed points must belong to 
the negative side.

Let us consider the positive fixed point. Since we cannot have its value analytically, the 
local stability analysis cannot be performed analytically. However, by using numerical 
simulations, we can see that the stability region is quite similar to the one of the linear 
case, as shown in Fig.  6a.1 In that figure, at a value of b such that 0 < b < 1, we can 
see that the upper left boundary corresponds to a flip bifurcation (as in the linear case 
of the previous section). An example soon after the flip bifurcation is shown in Fig. 6b 
projected in the (x, y), where the unstable set of the fixed point converges to an attract-
ing 2-cycle. In the upper right boundary the bifurcation is related to to the fixed point 
approaching infinity, similarly to the linear case of the delayed model considered in the 
previous section.

Also when b > 1 we have a stability region quite similar to the one observed in the 
linear case, as shown in Fig. 7a, with the upper left boundary leading to a flip bifurcation 
with a behavior similar to the one observed above (as shown in Fig. 7b), and the right 
side of the boundary of the stability region now includes also a border associated with a 
Neimark–Sacker bifurcation.

Fig. 5  Qualitatively representation of the two functions involved in Eq. (43) giving the equilibrium points

1  Figures 6a and 7a are obtained numerically considering a grid in the parameter plane, and for each point of the param-
eter plane we take an initial condition close to the fixed point, numerically obtained, and we check the behavior of the 
trajectory, which may be divergent, convergent to the fixed point or a 2-cycle or to something else (as a closed invariant 
curve).
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It is worth noting that in the nonlinear model global bifurcations may occur, so that, 
also in the case of a unique fixed point, other attracting sets may appear. An example is 
shown in Fig. 8a, and enlarged in Fig. 8b where the attracting fixed point is close to the 
Neimark–Sacker bifurcation, but it coexists with another attractor, belonging to a closed 
invariant curve. From the enlargement we can argue that it is a cycle of very high period. 
The global effects involve regions in the phase space far from the equilibrium of interest, 
and it is relevant in order to determine the width of the basin of attraction of the equilib-
rium. The section of the basin of attraction on the plane z = T ∗ is shown in Fig. 8c, and 
in the same figure we also have reported the projection of the two attractors. In it, yellow 
points converge to the fixed point while red points converge to the wide cycle, showing 
that the separator is probably a repelling closed invariant curve. As in fact, approaching 
the Neimark-Sacker bifurcation value, this curve shrinks to the fixed point in a subcriti-
cal bifurcation.

Fig. 6  In a the yellow region represents the stability region of the fixed point T ∗ in the parameter plane 
(c1, c2) at b = 0.8 , G = 100, γ = 1 , initial condition (400, 400, 400). In b projection of the trajectory of the 
nonlinear model in the plane (x , y) = (Tk , Tk+1) showing the attracting 2-cycle existing at b = 0.8, c1 = 0.2, 
c2 = 0.584618

Fig. 7  In a the yellow region represents the stability region of the fixed point T ∗ in the parameter plane 
(c1, c2) at b = 1.5 , G = 100, γ = 1,initial condition (400, 400, 400). In b projection of the trajectory of the 
nonlinear model in the plane (x , y) = (Tk , Tk+1) showing the attracting 2-cycle existing at b = 1.5, c1 = 0.2, 
c2 = 0.45001
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4 � Conclusions
In the present work we have shown how strong is the ability of the Samuelson’s model 
to represent stable oscillations converging to an equilibrium value. This has been 
shown in three cases. Namely, in Sect. 1 we have reconsidered the classical Samuel-
son’s multiplier–accelerator model for national economy with constant governmental 
expenditure. The stability region has been analytically determined as well as its ana-
lytic solution in all the possible cases of real or complex eigenvalues. In Sect.  2 we 
have reconsidered the delayed version of Samuelson’s model presented in Barros and 
Ortega (2019), performing the analysis of the stability region as a function of the three 
parameters, showing that indeed the stability region is mainly related to oscillatory 
behavior. In Sect. 3 we have proposed a simple nonlinear reformulation of the original 
Samuelson’s model, with non constant governmental expenditure, maintaining the 
delayed version presented in Barros and Ortega (2019). Here we have performed a 
numerical investigation of the stability region, showing that it is quite similar to the 
one presented in Sect.  2, and also that the dynamics are mainly oscillating towards 
the stable equilibrium.

Our analysis shows that the seminal work of Samuelson (1939), and simple modifica-
tions of it, may give powerful tools in the study of the business cycles. A calibration of 
the parameters with realistic outcomes is left for future work.
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