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1  Introduction
Structural decomposition analysis (SDA) of input–output data explains the change in 
a product of matrices and vectors—referred to as determinants or factors—in terms 
of the changes in each of those factors. In a single country input–output framework 
with N industries, the result may record the decomposed changes for each indus-
try i ∈ {1, . . . ,N } , as in the classic contribution of Dietzenbacher and Los (1998). The 
underlying changes in factors usually describe economy-wide changes, covering all N 
industries, and the result implicitly aggregates the effects of each industry j ∈ {1, . . . ,N } 
or groups thereof.

Disaggregation of factors into components that are industry-specific significantly 
increases the number of factors in the decomposition and, therefore, the complexity of 
computations. This also means that one of the factors is an inverse—typically, Leontief 
inverse—of a sum of other, industry-specific factors.

The complexity of structural decomposition where the target variable is a product of a 
large number of factors was addressed by Dietzenbacher and Los (1998) who reviewed 
various simplified ad hoc solutions. Since then, many authors have adopted the average 
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of the two ‘polar decompositions’ as their default SDA strategy, though de Haan (2001) 
indicated that these ‘polar decompositions’ were not unique, and there was no reason 
why a particular pair of ‘polar decompositions’ should be preferred. This is even more 
obvious if an inverse matrix is a sum of factors where their order can be freely altered.

The problem of additive factors nested within the Leontief inverse is the biggest com-
plication in SDA. Because of matrix inversion this problem is unknown in index number 
analysis, and decompositions that are consistent with the index number theory (sur-
veyed by Wang et al 2017; de Boer and Rodrigues 2020) may be infeasible. A ‘textbook’ 
solution, discussed by Rose and Casler (1996), uses a factorisation of the change in Leon-
tief inverse. Whether this solution biases the result and whether there is another ad hoc 
solution that minimises the bias—has not been systematically explored.

Bridging this gap in the literature, this paper reviews the ad hoc solutions that simplify 
the SDA calculations and approximate the results of complete decompositions. There are 
four solutions, called here ‘shortcuts’, for the additive SDA and two for the multiplicative 
SDA. The author runs numerical tests of all ‘shortcuts’ using the time series of input–
output data from Statistics Denmark and Statistics Netherlands. The number of factors 
within the Leontief inverse varies from 5 to 8. The tests reveal that one of the ‘shortcuts’ 
performs consistently better than others. This ‘shortcut’—the average of the two ‘polar 
decomposition forms’—is not new, but remained largely unnoticed, though reported to 
be efficient by Dietzenbacher and Los (1998). Indeed, it makes the SDA ‘short’: instead of 
computing 2N−1 decomposition forms and taking their weighted average for each of N  
factors to obtain the true result, it only requires computing 2 decomposition forms and 
taking their simple average to obtain an approximate result. Furthermore, a pair of ‘polar 
decomposition forms’ is unique to each factor and does not require the researcher to 
guess which of the forms should be preferred.

The contribution of this paper is the evidence of the best-performing approximate 
solution in a special case of SDA where the exact and true solution becomes prohibi-
tively complex. The design of the numerical experiment that yields that evidence stands 
out for a larger data input and number of factors than in many previous surveys of SDA 
techniques.

The special case addressed here may become a typical case in SDA of inter-country 
input–output tables where a factor may describe, e.g., a change in trade relationship 
between two countries, rather than the change in global trade pattern.

In the language of econometric modelling, SDA is designed to construct a ‘counterfac-
tual’ to answer the question “how the target variable would have changed if only one fac-
tor changed and other remained the same?” With country- and industry-specific factors, 
this ‘counterfactual’ can be constructed at a very disaggregate level. Then the direct cal-
culation of a disaggregate effect by SDA may be an appealing alternative to the indirect 
estimation of an aggregate effect by means of statistical inference followed by a possible 
disaggregation. This is true in cases where both SDA and econometric solutions apply, 
with due account of their conceptual differences, for example, in cases where the target 
and explanatory variables are connected via global value chains.

The paper is laid out as follows. Section 2 reminds the reader of the classic solutions 
to the additive and multiplicative SDA that are consistent with the index number theory, 
briefly reviews generic approaches to reduce the intensity of SDA calculations and to 
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obtain reasonable approximations. Following is an exposition of a particular case where 
one of the factors in the decomposition is an inverse of a sum of other factors, or, more 
precisely, the Leontief inverse. Then the ad hoc solutions, or ‘shortcuts’ to the complete 
decomposition, are formulated. Section 3 explains how these ‘shortcuts’ are tested and 
evaluated and how the necessary data are selected and prepared. This section concludes 
by reporting and discussing the results of the numerical experiment. Final remarks are 
set out in Sect. 4.

2 � Methods
2.1 � The general case of structural decomposition

For the general case of SDA, we will consider a variable Y that is a product of N  variables:

Each variable Zn is called factor where the subscript n identifies the nth factor in the 
decomposition. In the general case, Y and Zn are matrices, and in special cases, Z1 and/
or ZN may be vectors and Y may be a vector or a scalar.

Using superscripts (0) and (1) for the initial period 0 and the terminal period 1, define 
the change in Y . This can be done in two ways. First, define the absolute change in Y:

where � is the difference operator. �Y may be understood as an increment of Y and has 
the same units of measurement as Y (usually, monetary units).

Second, define the relative change in Y:

where P is the ratio operator and ⊘ signifies the element-by-element division. P Y meas-
ures the growth of each element in Y , and the units of measurement are dimensionless.

The problem of structural decomposition is to decompose �Y and P Y into N  terms 
that would attribute the change in Y to the changes in each nth factor. For example, the 
absolute change in Y that is induced by a change in Z1 may be written as:

where the superscripts (t2) . . . (tN ) can take values 1 or 0, and factors other than Z1 can 
therefore be defined at either initial or terminal periods. For brevity, we will denote 
�Y(Z1, t2, . . . , tN ) by �Y(Z1) . One combination of {t2, . . . , tN } corresponds to one 
decomposition form of �Y(Z1) . From the literature on the index number theory (Siegel 
1945) and structural decomposition analysis (Seibel 2003), it is known that the number 
of possible unique decomposition forms of �Y(Z1) is 2N−1.
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It is customary to refer to the two forms of �Y(Zn) where all factors other than Zn 
are defined at period 1 or period 0 as polar decomposition forms (Dietzenbacher and 
Los 1998; de Haan 2001). For example, the polar forms of �Y(Z1) are: 

All 2N−1 forms of �Y(Zn) can be classified according to the distance from the polar 
form, denoted by k ∈ {0, . . . ,N − 1} . One of the polar forms needs to be chosen as the 
starting point in the decomposition: for convenience, let it be (5a), and the corre-
sponding value of k is 0. This may be understood as follows: none of the remaining 
factors is defined at period 0, and all of those are at period 1. At k = 1 , one of the 
remaining factors is now defined at period 0, while the rest are still at period 1. Obvi-
ously, there are N − 1 such forms of �Y(Zn) . At k = 2 , two of the remaining factors 
are defined at period 0, while the rest are at period 1, which continues until the other 
polar form is reached at k = N − 1 . The number of unique forms of �Y(Zn) at each k 

is equal to the number of k combinations of N − 1 : (N−1)!
(N−1−k)!k!

=

(

N − 1
k

)

 . We will 

denote each mth unique form of �Y(Zn) at k steps from the polar form by �Y(Zn)k ,m 

with the subscript m running from 1 to 
(

N − 1
k

)

 . Calculating the weighted average of 

all unique forms at each k with the respective weights ck and across all k yields the 
aggregate form of �Y(Zn):

Expression (6) may be recognised as the Bennet indicator for the nth factor (de Boer and 
Rodrigues 2020) that is the additive counterpart to the well-known Fisher index. Finally, 
collecting the changes induced by all N  factors produces a full additive decomposition of 
�Y:

In case of multiplicative decomposition, the relative change in Y that is induced by a 
change in Z1 should be written as:
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The relative change P Y(Zn) aggregated within and between all k is as follows:

where 
⊙

 denotes the Hadamard product of a sequence, the power ◦ck applies to the 
elements of the respective vectors (Hadamard power), and the weights ck are defined as 
in Eq. (6). Expression (9) is nothing but the Fisher index for the nth factor. And the full 
multiplicative decomposition of P Y is given by:

Decompositions (7) and (10) are exact in the sense that they do not have any residual 
terms. These two formulae may be derived by computing the simple average (respec-
tively, arithmetic or geometric) of all elementary decompositions of the change in Y . An 
elementary decomposition is made of a unique sequence of N  decomposition forms 
denoting the change in Y because of the changes in each nth factor, that is �Y(Zn) or 
P Y(Zn) , where one n is consecutively chosen at each k . The total number of sequences is 
equal to the number of permutations of N  factors, or N ! (Dietzenbacher and Los 1998).

Computing the simple average from the elementary decompositions requires N ! forms 
of �Y(Zn) or P Y(Zn) some of which are duplicates, while computing the weighted aver-
age only involves 2N−1 unique forms thereof. The sum of all weights, with due account of 
the number of times they apply to all m th forms at step k , is unity:

Tables  1 and 2 provide an exemplary calculation of the coefficients (weights) and the 
number of unique decomposition forms for each factor required to implement decom-
positions (7) and (10) where the number of factors is up to 10. Thanks to the underlying 
formula, Table 2 contains the Pascal’s triangle less the first row. The number of unique 
decomposition forms for each factor ( 2N−1 ) and their sum for all factors ( N2N−1 ) are a 
good indication of the complexity of the decomposition exercise: in case of 5 factors, 16 
decomposition forms need to be computed for each factor and 80 for all factors, and in 
case of 10 factors, the respective numbers are 512 and 5120.

Hence, the well-known problem of SDA is an exponential growth of the array of 
terms to be computed for an exact and full decomposition of Y as the number of factors 
increases. Several approaches have been proposed in the literature on SDA to address 
this problem.
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It may be reasonable to handle factors in groups. For example, the factors that affect 
final demand may be delimited from those that affect intermediate demand. This enables 
hierarchical or nested SDA (see e.g., Koller and Stehrer 2010). In the most typical case of 
two groups, the array of N factors is divided into two subsets with R and S factors, where 
R+ S = N  . The decomposition will involve two aggregate factors at the first tier and 
R+ S factors at the second tier. The total number of decomposition forms for all N fac-
tors will now be R2R + S2S which is necessarily less than N2N−1 if at least R or S is more 
than 1.1

Dietzenbacher and Los (1998) and Dietzenbacher et al (2000) test the average of the 
two polar decompositions against the average of all elementary decompositions. One 

Table 1  Denominator of the coefficients (weights) in the decomposition

The numerator in all coefficients is 1. N is the number of factors in the decomposition and k is the distance from one of the 
polar decomposition forms

k

N 0 1 2 3 4 5 6 7 8 9

2 2 2

3 3 6 3

4 4 12 12 4

5 5 20 30 20 5

6 6 30 60 30 20 6

7 7 42 105 140 105 42 7

8 8 56 168 280 280 168 56 8

9 9 72 252 504 630 504 252 72 9

10 10 90 360 840 1260 1260 840 360 90 10

Table 2  Number of unique decomposition forms that correspond to one factor at each step from 
the polar form

N is the number of factors in the decomposition and k is the distance from one of the polar decomposition forms

k

N 0 1 2 3 4 5 6 7 8 9 Sum

2 1 1 2

3 1 2 1 4

4 1 3 3 1 8

5 1 4 6 4 1 16

6 1 5 10 10 5 1 32

7 1 6 15 20 15 6 1 64

8 1 7 21 35 35 21 7 1 128

9 1 8 28 56 70 56 28 8 1 256

10 1 9 36 84 126 126 84 36 9 1 512

1  Reduction in the total number of decomposition forms may be described by the ratio 
R + S

R

2S−1
+

S

2R−1

 . Note that, in the 

case of additive SDA with two subsets of factors, two decomposition forms for each aggregate factor may be conveni-
ently merged into one expression, e.g., �Y(Z1) = (�Z1)

1

2
(Z1 + Z2) . Then R2R + S2S decomposition forms may be com-

puted as R2R−1 + S2S−1 expressions, but these expressions must not be confused with the decomposition forms.



Page 7 of 17Muradov ﻿Economic Structures           (2021) 10:16 	

polar decomposition is the elementary decomposition where at each k starting from 
0, n = k + 1 , and another polar decomposition is its ‘mirror image’ with k running in 
reverse order, starting from N − 1 . There are two polar decompositions that contain the 
polar decomposition forms for the first and the last factors. This only requires comput-
ing two decomposition forms for each factor and 2N  forms for all factors. They show 
that the result is a good approximation of the full decomposition. However, de  Haan 
(2001) stresses that the selection of the two polar decompositions is arbitrary. There 
exist N !/2 such decomposition pairs among the elementary decompositions, and any 
factor can be first or last.

Dietzenbacher and Los (1998) also discuss two ad hoc solutions to simplify the SDA 
calculations that, however, do not provide exact decompositions. One solution is to take 
the averages of pairs of the polar decomposition forms for each factor.2 These averages 
may be treated as special cases of Eqs. (6) and (9) where the coefficients (weights) ck 
are set to 1/2 and k are set to 0 and N − 1 ( m is irrelevant because there is only one 
polar decomposition form at k = 0 and k = N − 1 ). Then the full decompositions may 
be written as:

where e� and ep are residual terms, respectively, in the additive and multiplicative cases, 
the lower index pol denotes a polar decomposition form and ◦ denotes the Hadamard 
product or Hadamard power in the superscript. This ad hoc solution requires computing 
2N  decomposition forms for all factors.

Another opportunity is to apply the so-called mid-point weights to each fac-
tor Zn . In the additive case, this signifies that, for example, �Y(Z1) is defined as 
Z
(1)
1 Z

(0/1)
2 . . .Z

(0/1)
N − Z

(0)
1 Z

(0/1)
2 . . .Z

(0/1)
N  plus an error term, where for n  = 1 , 

Z
(0/1)
n = 1

2Z
(0)
n + 1

2Z
(1)
n  . This solution, also known as the Marshall–Edgeworth decompo-

sition, therefore involves only one decomposition form for each factor and N  forms for 
all factors, but also has a residual term. It is less clear how the mid-term weights apply in 
the multiplicative case.

Dietzenbacher and Los (1998) report that both solutions perform rather well, and their 
results are very close to those from the full and exact additive decomposition of Y.

In addition to Bennet and Fisher decompositions that are combinatorial in nature and 
build on, respectively, the arithmetic and geometric averages, another family of decom-
positions employs the logarithmic mean. These include Montgomery (additive) decom-
position, Montgomery–Vartia (multiplicative) decomposition and Sato–Vartia (additive 
and multiplicative) decomposition that are exhaustively reviewed by de  Boer (2008, 
2009); de  Boer and Rodrigues (2020). These decompositions, particularly favoured for 
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2  Polar decomposition forms here and elsewhere must not be confused with polar decompositions.
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SDA of energy and emissions, are also known as ‘Divisia-based’, ‘Divisia-linked’ decom-
position approaches or ‘Logarithmic Mean Divisia Index’ (LMDI) methods (reviewed by 
Su and Ang (2012), Wang et al (2017)).

Montgomery, Montgomery–Vartia and Sato–Vartia decompositions are exact, and 
the related indicators and indices for each factor Zn are shown to be ideal—as are the 
Bennet indicator and the Fisher index—because they satisfy a number of tests from the 
index number theory (e.g., time reversal test, product test, etc.). Only one decomposi-
tion needs to be computed to obtain indicators or indices for all factors, so the methods 
based on the logarithmic mean are believed to be easier to implement than the combina-
torial ones. However, these methods are not reviewed here because they do not apply to 
the special case of structural decomposition that motivated this paper.

2.2 � A special case of structural decomposition: factors nested within an inverse matrix

Further complication arises if one of the factors Zn is an inverse of a sum of other fac-
tors. This is a typical case in input–output SDA. To elaborate, we now turn to a simple 
Leontief model3 where industry output x is a product of the Leontief inverse L and final 
demand f :

A is a matrix of technical coefficients with the j th column describing the expenditures 
on intermediate inputs per one unit of output of industry j ∈ {1, . . . , J } . For our illustra-
tive example, we will treat columns of A as factors. Each j th factor is then matrix Aj 
where all columns other that the j th column from A are set to zero. Under constant 
prices, the changes in j th factor may be understood as the changes in the ’production 
recipe’ or technology. The matrix of technical coefficients is now the sum of all J factors, 
A = A1 + A2 + · · · + AJ , and the change in output in the additive case is:

and in the multiplicative case:

Invoking the hierarchical approach, we first decompose the change in output into the 
changes induced by the change in the Leontief inverse and the change in final demand:

x = Lf = (I− A)−1
f .
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,

3  The following description is also applicable to the Ghosh model provided that the researcher is able to correctly inter-
pret the factors therein.
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For easier exposition, in the multiplicative case (16) the element-by-element division 
symbol ⊘ is replaced by the fraction sign, and the power applies to each element of the 
vector in brackets. The first term on the right-hand side of Eqs. (15) and (16) describes 
the changes in output related to the changes in the Leontief inverse. Note that this term 
is the average of the two underlying decomposition forms of �x(L) or P x(L).

There are two basic options (Rose and Casler 1996) to further decompose the changes 
related to the Leontief inverse. First, similar to Eq. (4), the difference of x that is attrib-
uted, for example, to the changes in the outlays of the first industry ( j = 1 ) may be writ-
ten as follows:

Then the complete decomposition of �x(A) will be identical to that of �Y in Sect. 2.1 
involving a total of 2J decomposition forms4 of �x(Aj) for all J factors and their weighted 
averages, leading to J Bennet indicators. Similarly, the decomposition of the ratio P x(A) 
involves J Fisher indices.

The second option utilises the known property of the Leontief inverse: 
�L = L

(1)(�A)L(0) = L
(0)(�A)L(1) . Replacing �A with the sum of the changes in J  fac-

tors yields: 

For any j, L(1)(�Aj)L
(0) is no longer equal to L(0)(�Aj)L

(1) , and an average of Eqs. 
(18a) and (18b) can be taken to avoid an arbitrary choice. Then there will be 2 decompo-
sition forms for each j th factor and 2J  forms for all J  factors.

There are two issues with this second option. Although mathematically correct, the 
terms related to each jth factor in Eqs. (18a) and (18b) or their average do not exactly 
capture changes attributable to that factor: L(1)(�Aj)L

(0)  = L
(1) − (I− A

(1) +�Aj)
−1 

and L(0)(�Aj)L
(1)  = L

(0)(�Aj)(I− A
(0) −�Aj)

−1 . The correct term for each jth factor 
would be L(1)(�Aj)(I− A

(1) +�Aj)
−1 and L(0)(�Aj)(I− A

(0) −�Aj)
−1 , but these will 

not add up to �L . Furthermore, this simplifying option is not available in the case of 
multiplicative decomposition.

Note that the decompositions based on the logarithmic mean require that the depend-
ent variable be expressed as a product of factors as in Eq. (1). As an inverse of a sum of 

(16)Px =

(

L
(1)
f
(1)

L(0)f (1)
◦
L
(1)
f
(0)

L(0)f (0)

)◦ 1
2

◦

(

L
(1)
f
(1)

L(1)f (0)
◦
L
(0)

f
(1)

L(0)f (0)

)◦ 1
2

.

(17)
�x(A1, t2, . . . , tJ ) =

1

2

(

I− A
(1)
1 − A

(t2)
2 − · · · − A

(tJ )
J

)−1(

f
(1) + f

(0)
)

−

−
1

2

(

I− A
(0)
1 − A

(t2)
2 − · · · − A

(tJ )
J

)−1(

f
(1) + f

(0)
)

.

(18a)
�L = L

(1)(�A)L(0) = L
(1)(�A1)L

(0) + L
(1)(�A2)L

(0) + · · · + L
(1)(�AJ )L

(0),

(18b)
�L = L

(0)(�A)L(1) = L
(0)(�A1)L

(1) + L
(0)(�A2)L

(1) + · · · + L
(0)(�AJ )L

(1).

4  The number of decomposition forms doubles because the decomposition is hierarchical, and, for each j  , final demand 
can be defined at either period 0 or period 1.
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factors cannot be expressed as a product of those factors, the Montgomery, Montgom-
ery–Vartia and Sato–Vartia decompositions are irrelevant in this special case.

The problem is now to find a reasonable ‘shortcut’ to the decomposition of �x(A) and 
P x(A) and to avoid computing all 2J decomposition forms where each form includes an 
inverse of a unique combination of factors therein.

2.3 � ‘Shortcuts’ to the complete decomposition with factors nested in the Leontief inverse

There is no specific order of factors within the Leontief inverse: any factor can appear 
first or last in the sum without affecting the result. It is even more obvious in this case 
that the choice of two polar decompositions is arbitrary.5 Therefore, we will not consider 
the average of two polar decompositions as a viable shortcut.

The shortcuts to be considered are as follows:
Shortcut 1 The averages of pairs of the polar decomposition forms for each factor
This shortcut applies Eqs. (11) and (12) to the factors within the Leontief inverse. For 

each j , compute two polar decomposition forms of �x(Aj) according to Eq. (17) where 
all time periods t other than tj are set to 1 and 0 (in other words, two decomposition 
forms at distance k ∈ {0, J − 1} from the polar form), then take the average of the two 
forms. The change of x because of change in the j th factor then is:

The above requires computing only 2 forms for each factor, 2J  forms for all factors and 
does not provide an exact decomposition.

Shortcut 2 The normalised averages of pairs of the polar decomposition forms for each 
factor

The information from Eqs. (19) and (20) can be utilised to modify the averaged polar 
forms �x(Aj)pol  and Px(Aj)pol  , so that the decompositions of �x(A) and P x(A) are 
exact. Therefore, the residual term is distributed across the indicators or indices for all 
J  factors. In the additive case, this can be achieved by multiplying each element in the 
averaged j th polar form by a respective coefficient:

In the multiplicative case, the coefficients need to be defined as powers that apply to the 
base on an element-by-element basis:

(19)�x(Aj)S1 = �x(Aj)pol =
∑

k=0,J−1

1

2
�x(Aj)k ,

(20)Px(Aj)S1 = Px(Aj)pol =
⊙

k=0,N−1

(

Px(Aj)k
)◦ 1

2 .

(21)�x(Aj)S2 = c� ◦�x(Aj)pol where c� =
�

�x(A)
�

⊘





J
�

j=1

�x(Aj)pol



.

5  In the generic case of the decomposition of a product of N variables as in Eq. (1), the choice of the two polar decompo-
sitions may be justified by the order of those variables that cannot be arbitrarily altered. This is the standard approach in 
the related literature.



Page 11 of 17Muradov ﻿Economic Structures           (2021) 10:16 	

and i denotes the i th element in the respective J × 1 vector.
The above modification of shortcut 1 requires the computation of 2J  polar decomposi-

tion forms for each factor and for all factors and provides an exact decomposition.
Shortcut 3 Decomposition with mid-point weights (Marshall–Edgeworth decomposi-

tion)—only for additive decomposition
For the calculation of the change attributed to the j th factor, other factors are defined 

as the arithmetic mean of their values at period 0 and period 1. We modify Eq. (17) to 
formally describe shortcut 3:

There are two decomposition forms for each factor and 2J  forms for all factors. An 
aggregation across all J  factors does not provide an exact decomposition.

Shortcut 4 Factorisation of the change in the Leontief inverse—only for additive 
decomposition

We will finally compute the difference of x attributed to the change in each factor that 
builds on the factorisation of �L as it appears in Eqs. (18a)–(18b):

The above computes two decomposition forms for each factor, merged into one expres-
sion, and 2J  forms for all factors. The decomposition is exact. Although shortcut 4 
cannot be interpreted as a correct measure of the effect of the change in Aj , it can still 
provide an approximation of the true result, and we will see whether that approximation 
is good.

3 � Results and discussion
3.1 � Testing strategy

We will evaluate the performance of the shortcuts in Sect. 2.3 according to the following 
logic: 

1.	 Compute the true vectors of changes �x(Aj) in additive decomposition and P x(Aj) 
in multiplicative decomposition as, respectively, Bennet indicators and Fisher 
indices for each factor j . An aggregation across all J  factors must yield a vec-
tor of changes in industry output induced by the changes in technical coefficients 
and, hence, the changes in the Leontief inverse: 

∑J
j=1

(

�x(Aj)
)

= �x(A) and 
⊙J

j=1

(

Px(Aj)
)

= Px(A) , which are equal to the first terms on the right-hand side of, 

(22)

Px(Aj)S2 =
(

Px(Aj)pol
)◦cp

,

where (cp)i = log(b)i (Px(A))i, (b)i =

J
∏

j=1

(

Px(Aj)pol
)

i
,

(23)

�x(Aj)S3 =
1

2



I− A
(1)
j −

J
�

h�=j

1

2

�

A
(1)
h + A

(0)
h

�





−1
�

f
(1) + f

(0)
�

−

−
1

2
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(0)
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�
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1

2
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(1)
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(0)
h
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(24)�x(Aj)S4 =
1

2

(

L
(1)(�Aj)L

(0) + L
(0)(�Aj)L

(1)
)1

2

(

f
(1) + f

(0)
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.
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respectively, Eqs. (15) and (16). This is the consistency-in-aggregation property that 
shortcuts 1 and 3 do not have.

2.	 Compute the estimates of the vectors of changes using shortcuts 1–4 for additive 
decomposition and shortcuts 1–2 for multiplicative decomposition for each j th fac-
tor and aggregates for all J  factors.

3.	 Use standard matrix comparison methods to evaluate the performance of the tested 
shortcuts. In related literature, it is customary to use an array of measures of distance 
that meet researcher’s criteria. A measure of distance is a scalar that weighs, scales 
and aggregates the differences between each element of an estimated matrix (vec-
tor) and the respective element of the true matrix (vector). The best estimate should 
be the closest, i.e., should have the smallest distance, to the true values. A survey of 
literature led to a selection of 12 measures of distance listed in the Additional file 1. 
To avoid misleading conclusions, measures of similarity rather than distance were 
disregarded.6 Calculate all selected measures of distance for each shortcut and each 
j th factor. Identify the best-performing shortcut by each measure of distance and for 
each j th factor. Then aggregate the information across all 12 measures and select the 
best-performing shortcut for each j th factor. Finally, summarise the results for all 
J  factors, selecting one best-performing shortcut (or, if not possible, two or more 
shortcuts). In the case of additive decomposition, the measures of distance will also 
be calculated for the aggregate change representing all J  factors to find out whether 
shortcut 1 or 3 provides estimates that are closer to the exact decomposition.

4	 Calculate an additional summary statistic for each shortcut: the share of entries in 
the estimated vectors of changes for each j th factor where this shortcut provides the 
best estimate, i.e., the closest to the true value. This statistic ignores the average dis-
tance to the true results and, rather, indicates a success rate in producing the best 
estimates. Use this percentage as the score to identify the best-performing shortcut.

3.2 � Data management strategy

Input–output data for the numerical experiment can be generated from random num-
bers or can be drawn from recognised sources of statistical information. As the structure 
of real input–output tables is not entirely random, the latter option is preferred here, 
which is also in line with previous studies of SDA (e.g., de Boer and Rodrigues, 2020). 
Data selection and processing steps are as follows:

•	 Look for time series of input–output tables at current prices and previous year’s 
prices, preferably, released by national statistical offices. A survey of official releases 
of national input–output data available online revealed two sources: Statistics Den-
mark and Statistics Netherlands. Statistics Denmark maintains perhaps the long-
est annual series of input–output tables starting from 1966 in 117-industry and 
69-industry classifications of which the latter is sufficient for the purpose of this 
paper. Statistics Netherlands offers annual input–output tables starting from 1995 in 

6  Such measures as R-squared (coefficient of determination) and various information-based statistics are invariant to 
scaling: multiplying an estimate by a scalar—and, therefore, magnifying the differences with the true value—does not 
change the result of the comparison (see e.g., Steen-Olsen et al. 2016).
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76-industry classification. Both statistical offices provide the tables at current prices 
and previous year’s prices which ensures the consistency of structural decomposi-
tion. For the proposed numerical test, the time coverage of tables was limited to 
2006–2015.7

•	 Adapt and aggregate input–output tables. Input–output tables for both countries 
were aggregated to four alternate classifications with 5 to 8 industries to ensure 
that the structural decomposition is computationally manageable.8 The aggregation 
schemes (available with the supporting dataset, see the data availability statement) 
are not random and are designed to delineate larger classes of economic activities.

•	 Run the SDA on the aggregated input–output tables for Denmark and the Neth-
erlands according to the testing strategy with 5 to 8 factors that correspond to the 
changes in the ‘production recipe’ or technology of the aggregate industries. Ignore 
other factors that are not related to the changes in technical coefficients.

In terms of the number of factors and time coverage, the data input in this numerical 
experiment is larger than in many previous studies of SDA techniques. For interested 
readers, executable codes that can be used to replicate the computations are in Addi-
tional file 2.

3.3 � Results of the numerical experiment

The results of the numerical experiment, including the true and estimated vectors of 
changes by factor and indicators of their performance, are deposited at the figshare 
repository and are available at the link that can be found in the data availability state-
ment. Tables 3, 4, 5, 6 and 7 summarise the results, indicating which shortcut provides 
the best estimates for each set of factors and each of the 9 yearly intervals. The last row 
identifies the single best-performing shortcut for all intervals. Two or three shortcuts 
appear in one cell in the cases where these shortcuts perform equally well.

Tables  3 and 4 reveal that, by and large, shortcut 1 outperforms other shortcuts in 
additive SDA. The results are not uniform and vary across time and the number of fac-
tors. For example, in the additive SDA of industry output of the Netherlands in 2010–
2011, shortcut 4 provides the best estimates with five factors corresponding to the five 
aggregate industries, shortcut 1 ranks the best with six factors, shortcut 3 with seven 
factors, and both shortcuts 1 and 3 provide the best estimates with the number of factors 
increasing to eight, as measured by the distance to the true results. For any set of factors, 
except five-factor SDA for the Netherlands, shortcut 1 provides the estimates at minimal 
overall distance from the true values in most yearly intervals (see Table 3).

7  For Denmark, retrieved from https://​www.​dst.​dk/​ext/​43727​65735/0/​inout/​Excel-​files-​with-​IO-​data-​for-​the-​period-​
2006-​2015-​(69-​indus​tries)--​zip, accessed 6 February 2020. For the Netherlands, retrieved from https://​www.​cbs.​nl/-/​
media/_​excel/​2016/​35/​input-​output-​tables-​1995-​2015.​xls, accessed 10 December 2019.
8  In the Dutch tables, trade and transport margins are exogenous to the intermediate consumption. There is a column 
vector of trade and transport margins that are recorded as products supplied by domestic industries or as imported 
products. There is also a row vector that allocates those margins to the intermediate demand by industries and to final 
demand. For consistency with the usual input–output table layout and with the Danish tables, the supply of trade and 
transport margins in the Netherlands was distributed between the intermediate and final demand and across the pur-
chasing industries. The matrix of imputed flows of trade and transport margins was constructed with the RAS method 
using the matrix of intermediate transactions and the aggregated vector of final demand as prior estimates. This did not 
involve a change of valuation from basic to purchasers’ prices.

https://www.dst.dk/ext/4372765735/0/inout/Excel-files-with-IO-data-for-the-period-2006-2015-%2869-industries%29--zip
https://www.dst.dk/ext/4372765735/0/inout/Excel-files-with-IO-data-for-the-period-2006-2015-%2869-industries%29--zip
https://www.cbs.nl/-/media/_excel/2016/35/input-output-tables-1995-2015.xls
https://www.cbs.nl/-/media/_excel/2016/35/input-output-tables-1995-2015.xls
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The prevalence of shortcut 1 is somewhat weaker if judged by the share of the best 
estimates that this shortcut yields. Still shortcut 1 ensures the largest share of best esti-
mates in most yearly intervals for all set of factors except five-factor SDA for the Nether-
lands, six-factor and eight-factor SDA for Denmark (see Table 4).

Table 5 shows that shortcut 1 outperforms shortcut 3 in terms of the distance of the 
aggregate estimates to the aggregate true results.

A reasonable indicator of the accuracy of estimates by shortcut 1 in additive SDA is 
the mean absolute percentage error (MAPE, see Additional file 1) that is calculated for 
each j th factor and each yearly interval. MAPE is rather small: maximum 0.12% for Den-
mark and 0.21% for the Netherlands.

In multiplicative SDA, shortcut 1 is the best-performing approach in the vast 
majority of cases, as Tables 6 and 7 show. A possible reason is that shortcuts 3 and 

Table 3  Best-performing shortcuts to the complete additive SDA, by measured distance to the true 
results

NLD stands for the Netherlands and DNK for Denmark. The values in the table are numbers of the shortcuts as listed in 
Sect. 2.3

Source: author’s calculations

5 factors 6 factors 7 factors 8 factors

Period DNK NLD DNK NLD DNK NLD DNK NLD

2006–2007 1 4 1 1, 4 1 1 1 1

2007–2008 3 2 3 1 3 1, 4 3 2

2008–2009 1 1 3 1 3 1 1, 3 1

2009–2010 1 2 1 2, 3 1 1, 2, 4 1 2

2010–2011 1 4 1 1 1, 2, 4 3 3 1, 3

2011–2012 3 2 2, 3 1 3 3 3 3

2012–2013 1, 2 2 1 2 1 1, 4 1 4

2013–2014 1 1 1 1 1 1 2, 3 1

2014–2015 1 1 1 1 1 1 1 1

All 1 2 1 1 1 1 1 1

Table 4  Best-performing shortcuts to the complete additive SDA, by share of the best estimates

NLD stands for the Netherlands and DNK for Denmark. The values in the table are numbers of the shortcuts as listed in 
Sect. 2.3

Source: author’s calculations

5 factors 6 factors 7 factors 8 factors

Period DNK NLD DNK NLD DNK NLD DNK NLD

2006–2007 1 2 2 2 1 1 1, 3 1

2007–2008 2 2 3 1 3 2 3 2

2008–2009 4 1 2 1, 2 3 1 3 1

2009–2010 1 2 1 4 1, 2 2 1 2

2010–2011 1, 3 4 1 1, 4 1 3 3 3

2011–2012 3 1, 2 3 1 3 3 3 3

2012–2013 1 2 3 2 1 2 2 2

2013–2014 1 2 1 1 1, 2 1 2 1

2014–2015 1 2 2 1 2 1 2 1

All 1 2 1, 2, 3 1 1 1 3 1
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4 do not apply to multiplicative SDA. As the results of multiplicative decomposition 
are ratios, we can judge the accuracy of estimates by considering the mean absolute 
difference (MAD, see Additional file 1) transformed into percentage form, i.e., multi-
plied by 100. The maximum MAD for Denmark is 0.000066 percentage points and for 
the Netherlands 0.000021 percentage points.

Another important observation from Tables 3 and 4 is that shortcut 4—that builds 
on the factorisation of the change in the Leontief inverse and is largely accepted in the 
literature (e.g., Oosterhaven and Hoen 1998; Miller and Blair 2009, chap.13)—pro-
duces a bias in the results of additive SDA, and this bias tends to be larger than that of 
other shortcuts.

Table 5  Best-performing shortcuts to the complete additive SDA, by measured distance to the 
aggregate true results

NLD stands for the Netherlands and DNK for Denmark. The values in the table are numbers of the shortcuts as listed in 
Sect. 2.3

Source: author’s calculations

5 factors 6 factors 7 factors 8 factors

Period DNK NLD DNK NLD DNK NLD DNK NLD

2006–2007 1 1 1 3 1 1 1 1

2007–2008 3 1 1 3 3 1 3 3

2008–2009 3 1 1 3 3 1 3 1

2009–2010 1 1 1 1 1 1 1 1

2010–2011 1 3 3 1 1 3 3 3

2011–2012 3 3 3 1 3 3 3 1

2012–2013 1 1 1 1 1 1 1 1

2013–2014 1 1 1 3 1 1 1 1

2014–2015 1 1 1 1 1 1 1 1

All 1 1 1 1 1 1 1 1

Table 6  Best-performing shortcuts to the complete multiplicative SDA, by measured distance to 
the true results

NLD stands for the Netherlands and DNK for Denmark. The values in the table are numbers of the shortcuts as listed in 
Sect. 2.3

Source: author’s calculations

5 factors 6 factors 7 factors 8 factors

Period DNK NLD DNK NLD DNK NLD DNK NLD

2006–2007 1 1 1 1 1 1 1, 2 1

2007–2008 1 2 1 1 1 1 1 1

2008–2009 1 1 1 1 1 1 1 1

2009–2010 1 2 1 1 1 1 1 1

2010–2011 1 1 1 2 1 1 1 1

2011–2012 1 2 1 1 1 2 1 2

2012–2013 1 1 1 1 1 1 1 1

2013–2014 1 2 1 1 1 1 1, 2 1

2014–2015 1 1 1 1, 2 1 2 1 2

All 1 1 1 1 1 1 1 1
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4 � Conclusion
When the number of factors that are nested within the Leontief inverse increases to 
hundreds or thousands, the structural decomposition that is consistent with the index 
number theory becomes incredibly cumbersome or even infeasible. Researchers need 
a reasonable approximation with minimum computations and maximum accuracy of 
results. A solution that is largely acceptable in the literature is to take the average of 
the two polar decompositions. However, the selection of such polar decompositions is 
entirely arbitrary: any decomposition with its ‘mirror image’ can be treated as polar.

This paper tested three ad hoc solutions known from the literature and one new vari-
ant to estimate the changes in the dependent variable induced by the changes of mul-
tiple factors within the Leontief inverse. All four solutions avoid arbitrary choice of 
decompositions, or the order of changes in factors, and require computing only two 
decomposition forms for each factor. The numerical experiment with time series of real 
input–output tables produced evidence that supports employing one of the four ad hoc 
solutions: taking the average of the two polar decomposition forms for each factor. It is 
more likely to obtain estimates with minimum errors with this solution, rather than with 
the other solutions.

The above finding is thought to be in particular useful for SDA that involves inter-
country input–output tables. With a reliable ‘shortcut’ to complete decomposition, 
investigators should be able to identify the country and industry sources of changes 
that affect the performance of a country and/or industry of interest. While the bias this 
‘shortcut’ minimises may be small, it is important that the selection of computational 
approach is not arbitrary and is based on sound evidence.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40008-​021-​00245-5.

Additional file 1. Measures of distance used for the comparison of estimated and true vectors of changes.

Additional file 2. Executable codes that were used to run the numerical experiment (including a “read me” file).

Table 7  Best-performing shortcuts to the complete multiplicative SDA, by share of the best 
estimates

NLD stands for the Netherlands and DNK for Denmark. The values in the table are numbers of the shortcuts as listed in 
Sect. 2.3

Source: author’s calculations

5 factors 6 factors 7 factors 8 factors

Period DNK NLD DNK NLD DNK NLD DNK NLD

2006–2007 1 1 1 1 1 1 1 1

2007–2008 1 1 1 1 1 1 1 1

2008–2009 1 1 1 1 1 1 1 1

2009–2010 1 2 1 1 1 1 1 1

2010–2011 1 1 1 1 1 1 1 1

2011–2012 1 2 1 1 1 2 1 1

2012–2013 1 1 1 1 1 1 1 1

2013–2014 1 1 1 1 1 1 1 1

2014–2015 1 1 1 1 1 1 1 1

All 1 1 1 1 1 1 1 1
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