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Abstract 

This study evaluates the progress of efficient energy use and the control of carbon 
dioxide  (CO2) emissions in Japan between 1990 and 2012. A new indicator of energy 
performance is presented called environmental energy efficiency (EEE). The EEE of 
manufacturing industries was measured by each prefecture in Japan. We estimated the 
influencing factors of EEE for each industry by applying the pooled mean group (PMG) 
method. Our findings are as follows: First, the Japanese manufacturing industry has not 
been in line with the EEE improvement goals since the adoption of the Kyoto Protocol. 
However, the progress of each industry was relatively consistent by region. Second, EEE 
tends to improve and then deteriorate or monotonically increase as economic devel-
opment progresses. Third, EEE is raised by expanding industry share. Finally, EEE, which 
focuses on energy reduction, is likely to increase with the progress of energy-saving 
technology.

Keywords: Cleaner production, Data envelopment analysis, Environmental energy 
efficiency, Manufacturing industry, Pooled mean group
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1 Introduction
Since the adoption of the Kyoto Protocol in 1997, Japan has promoted efforts to 
reduce greenhouse gas emissions to mitigate global warming. The Protocol imposed 
an obligation on Japan to reduce greenhouse gas emissions by 6% by 2012 compared 
to its 1990 level. This reduction target, however, was not achieved by that deadline. 
Energy-related carbon dioxide  (CO2) emissions increased from 1068 million tons in 
1990 to 1227 million tons in 2012, and the manufacturing sector, which is the main 
source of emissions, accounted for 25–33% of these emissions during this period.1 
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Cooperation with manufacturing companies is indispensable to cut  CO2 emissions, 
and environmental operations are inevitable because they are expected to address the 
issue of global warming as part of their corporate social responsibility (Managi and 
Kuriyama 2017, pp. 164–170).

Introducing cleaner production approaches can help decrease  CO2 emissions. 
Cleaner production aims to reduce the burden on the environment in all production 
processes, from the input of raw materials to the output and disposal of products 
(Managi and Kuriyama 2017, pp. 206–207). Since the enforcement of the Protocol, 
the approach has become more widespread in Japanese firms. As a result, manufac-
turing companies may have promoted a review of energy use, such as using clean 
energy, adopting energy-saving technology, and recycling energy.

Companies have an inherent incentive to improve energy performance, which is 
defined as energy use per unit of production, even in a situation that has not intro-
duced cleaner production approaches. This is because it has the potential to reduce 
production costs through energy savings. However, in a situation where cleaner pro-
duction is required to reduce  CO2 emissions, energy performance may not improve as 
expected immediately. This is due to the possibility that all production methods are 
reviewed considering long-term investments. Ideally, it is desirable for the companies 
that energy use remains the most efficient in either situation, considering it with and 
without pollution abatement.

The first objective of our study is to apply a new indicator of energy performance, 
considering the aforementioned situations in subnational (prefectural) scope. We 
refer to this new indicator as environmental energy efficiency (EEE), which has been 
employed at a multinational but regional level to date (Zhou and Ang 2008; Rakshit 
and Mandal 2020). Besides, our EEE takes a ratio to create an EEE index; this is differ-
ent from previous studies. This indicator is an application of environmental efficiency 
proposed by Färe et al. (1996) and Kumar and Khanna (2009), which is measured by 
data envelopment analysis (DEA) using a distance function approach. For the period 
between 1990 and 2012, which was the framework for the Kyoto Protocol, we evaluate 
whether efficient use of energy and  CO2 emissions control has progressed by measur-
ing the EEE of each prefecture in Japan. We focus on measuring the EEE of manu-
facturing industries because they are the main sources of  CO2 emissions. This study 
extracts seven industries from the manufacturing sector, in addition to the entire 
manufacturing industry, and provides policymakers with detailed information about 
industry-wise trends of energy performance in Japan.

Further, it is necessary to analyze the influencing factors of EEE to derive useful 
policy guidelines. The second objective of our study is to estimate EEE factors using a 
panel data analysis for the period of 1990–2012. We demonstrate that there is a signif-
icant relationship between EEE and three factors: economic development, industrial 
structure, and technological progress. This study investigates the influencing factors 
using a pooled mean group (PMG) estimator based on the autoregressive distributed 
lag (ARDL) approach of Pesaran et  al. (1999) while simultaneously considering the 
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problems of cross-sectional dependence, unit roots, and cointegration in the panels. 
We ultimately propose appropriate environmental energy strategies for policymakers.

The remainder of this paper is organized as follows. “Literature review” Section pre-
sents a brief literature review and the contributions of our study. “Measuring environ-
mental energy efficiency” Section provides the measurement method of EEE, including 
the data used and the measurement results. “Panel data analysis” Section explains our 
panel data models, applied panel data, and reports the estimation results. “Conclusion” 
Section summarizes our empirical results and suggests directions for environmental 
energy policies in Japan.

2  Literature review
Energy input plays a pivotal role in the production of products. However, it generates 
undesirable byproducts, such as greenhouse gas emissions, which raises environmen-
tal concerns. The concept of energy efficiency is associated with controlling the adverse 
environmental effect and has become increasingly crucial. It refers to the minimized use 
of energy in the production process without compromising the same level of output.

The DEA method has been increasingly used in the past decades to investigate the 
nexus of environment and energy efficiency (Mardani et al. 2017). The DEA models pri-
marily apply radial or non-radial measures, while our EEE is constructed using the radial 
model. Previous studies on environment and energy efficiency included a wide range of 
analysis targets from a multi-country perspective as examples of radial measures (Zhou 
and Ang 2008; Rakshit and Mandal 2020). Most empirical studies were focused on 
China (Wu et al. 2012) and India (Mandal 2010) because they are the world’s top energy 
consumers and  CO2 emitters among developing countries. However, other prior studies 
focus on Japan (Sueyoshi and Goto 2011; Fukuyama et al. 2020). We examine the empiri-
cal results of previous studies based on the radial model that serve as benchmarks for 
this study.

In previous research targeting Japan, the topic of energy efficiency has been researched 
sequentially since Hu and Wang (2006) proposed the index of total-factor energy effi-
ciency (TFEE) using a DEA. Honma and Hu (2008) divide energy input into 11 sources 
between 1993 and 2003 in earlier applications of the region-wise TFEE assessment by 
Japanese prefectures. They found that, unlike most efficient inland and coastal (along 
the Sea of Japan) regions, Niigata and other prefectures (especially Chiba, Wakayama, 
and Yamaguchi) located in the Pacific Belt Zone, where energy-intensive industries have 
developed, were less energy efficient in the use of heavy oil and coal.

Moreover, Honma and Hu (2014b, 2018) supported these results. They estimated the 
effects of manufacturing share on the TFEE using panel data of the Japanese prefec-
ture from 1996–2008.2 The results showed that increased shares of the manufacturing 
industry (especially energy-intensive industry) are associated with a decline in energy 
efficiency.

2 Their TFEE were mainly measured by stochastic frontier analysis (SFA) using a parametric approach.



Page 4 of 26Shimizu and Tiku  Journal of Economic Structures            (2023) 12:3 

Additionally, the sector-wise TFEE in the period of 1998–2005 was examined by the 
work of Honma and Hu (2013). In the Japanese manufacturing sector, they confirmed that 
as opposed to machinery industries (i.e., general, electric, and transportation machinery), 
energy-intensive industries (i.e., pulp and paper, chemical, cement and ceramics, and pri-
mary metal) have worse inefficiency on energy use in all studied years. However, according 
to Honma and Hu (2014a), whose study measured the country-wise TFEE for seven indus-
tries comparing Japan and another 13 developed countries in the period of 1995–2005, the 
results indicated that the industrial energy efficiency of Japan is at a higher level among 
developed countries through international comparison.

Honma and Hu have mainly focused on energy efficiency, not simultaneously account-
ing for environmental efficiency, which measures how much pollution emissions can be 
reduced in a production process. Although several prior studies investigated environmental 
efficiency in Japanese prefectures, such as Honma and Hu (2009) and Eguchi (2017), energy 
input was not incorporated into their DEA applications. Consequently, this study has three 
differences or contributions compared to previous studies. First, the current study proposes 
the EEE indicator, which simultaneously accounts for energy and environmental efficiency. 
Second, the study focuses on the manufacturing sector, including its seven subsectors, in 
Japanese prefectures. Third, it investigates the influencing factors of EEE in each industry 
using a PMG method. Thus, our study applies prefecture- and industry-level data in the 
Japanese manufacturing sector, where the level of industrial development differs among 
prefectures, and scrutinizes the movements of environmental energy performance in Japan.

3  Measuring environmental energy efficiency
3.1  Methodology and data

To present EEE, this study uses environmental or regulated technology, which is 
assumed for the joint production of desirable and undesirable outputs, and traditional 
or unregulated technology without simultaneously accounting for undesirable outputs 
(Färe et al. 2007). In the regulated technology, three inputs, including labor (l), capital 
stock (k), and energy (e), are used for producing the added value (y), which is a desirable 
output, while  CO2 (c) is an undesirable output. The unregulated technology does not 
consider  CO2 emissions in our approach. The regulated technology can then be repre-
sented as follows:

The technology that handles finite inputs and outputs is assumed to satisfy the stand-
ard properties: T is compact, while inputs and desirable outputs are strongly or freely 
disposable, as described by Färe and Grosskopf (2003). To show that it is a regulated 
technology, T is assumed to incorporate two additional conditions: null-jointness and 
weak disposability of outputs. Null-jointness is expressed as follows:

This means that  CO2 is emitted to generate an added value. The weak disposability of 
the outputs is as follows:

(1)T =
{(

l, k , e, y, c
)
: (l, k , e) can produce

(
y, c

)}

(2)if
(
l, k , e, y, c

)
∈ T and c = 0 then y = 0
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This implies that if  CO2 emissions are reduced at the rate of ϕ , the added value simul-
taneously decreases at the same rate when the inputs are kept constant.3 This assumes 
that it is necessary to continue to divert some of the inputs in order to continuously 
reduce undesirable outputs, resulting in a proportionate decrease in desirable outputs 
under a given production technology. This assumption is introduced by Färe et al. (1989) 
and shows that it is usually necessary to incur regulatory costs to control emissions. 
However, the unregulated technology does not incorporate  CO2 emissions in T and is 
represented as follows:

T̂ assumes free disposability of undesirable outputs; that is, there is no regulatory cost 
to control  CO2 emissions.

Let i = (1, …, I) index be represented by the observations of inputs and outputs, (li, ki, 
ei, yi, ci) for i = 1, …, I; the regulated DEA technology of T consists of the following:

In Eq. (5), the second constraint sets strict equality and imposes weak disposability on 
the undesirable output. Null-jointness is assumed to satisfy the condition 

∑I
i=1ci > 0 . zi 

as an intensity variable, while the sixth constraint is assumed to impose variable returns 
to scale (VRS) on the technology. The unregulated DEA technology of T̂ is established by 
excluding  CO2 emissions and dropping the second constraint in Eq. (5).

In this study, we propose two types of EEE by applying a distance function approach. 
To derive the first EEE, this study adopts the input distance function, accounting for 
both the reduction of energy use and  CO2 emissions, which applies Tyteca’s (1997) 
input-undesirable output model.4 The input distance function is defined as follows:

This distance function is a modification of the Shephard carbon distance function 
defined by Zhou et al. (2010).5 The value of β indicates how much energy use and  CO2 
emissions can be simultaneously reduced. We assume that the input distance function 
is separable in desirable and undesirable outputs, following Kumar and Khanna (2009).6 
Equation (6) can be rewritten as:

(3)if
(
l, k , e, y, c

)
∈ T and 0 ≤ ϕ ≤ 1 then (l, k , e,ϕy,ϕc) ∈ T

(4)T̂ =
{(

l, k , e, y
)
: (l, k , e) can produce y

}

(5)

T = {(l, k , e, y, c) :

I∑

i=1

ziyi ≥ y,

I∑

i=1

zici = c,

I∑

i=1

zili ≤ l,

I∑

i=1

ziki ≤ k ,

I∑

i=1

ziei ≤ e,

I∑

i=1

zi = 1,zi ≥ 0, i = 1, ..., I}

(6)Dc

(
l, k , e, y, c

)
= sup{β :

(
l, k , e/β , y, c/β

)
∈ T }

3 This is a standard approach that imposes on technology, which clarifies the relationship between desirable and unde-
sirable outputs. See Fig. 1 and the description on page 163 in Färe et al. (1996).
4 The model of Tyteca (1997) is simultaneously considered for the reduction of all inputs and undesirable outputs.
5 The distance function of Zhou et al. (2010) focuses only on reducing  CO2 emissions.
6 It is adopted in this study for the assumption of separability because its effectiveness is recognized in Färe et  al. 
(1995). However, Kumar and Khanna (2009) employed the directional output distance function, which is simultaneously 
accounted for the increase in GDP and the reduction in  CO2 emissions.
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where

Equation (8) is the energy-oriented input distance function without considering  CO2 
emissions. The value of λ indicates the extent to which energy use can be reduced, not 
considering  CO2 emissions.

However, this study also presents the second EEE using the input distance function, 
which only accounts for the reduction in energy use. The input distance function is 
defined as follows:

This distance function is the Shephard energy distance function defined by Wu et al. 
(2012). The value of θ indicates the extent to which energy use can be reduced, consider-
ing  CO2 emissions. Based on Färe et al. (1996), we can assume that the input distance 
function is separable in desirable and undesirable outputs.7 Equation (9) can be rewrit-
ten as:

where D̂e(l, k, e, y) = ̂Dc(l, k, e, y).
According to Färe et al. (1996) and Kumar and Khanna (2009), Eqs.  (7) and (10) are 

decomposed into the terms that reveal the impact of  CO2 emissions, C(c), and the term 
that captures the effect of energy efficiency, D̂c(l, k, e, y) and D̂e(l, k, e, y). Consequently, 
EEE1 and EEE2 were obtained as follows:

and

where D̂(l, k, e, y) = D̂c(l, k, e, y) = D̂e(l, k, e, y). If the EEE1 and EEE2 equal 1, it can 
be concluded that the observation is considered environmentally energy efficient. How-
ever, if the EEE1 and EEE2 is less than 1, the observation is regarded as environmentally 
energy inefficient in this study.

As three input distance functions need to be computed, this study solves the following 
linear programming problems:

(7)Dc

(
l, k , e, y, c

)
= C(c)D̂c

(
l, k , e, y

)

(8)D̂c

(
l, k , e, y

)
= sup{� :

(
l, k , e/�, y

)
∈ T̂ }

(9)De

(
l, k , e, y, c

)
= sup{θ :

(
l, k , e/θ , y, c

)
∈ T }

(10)De

(
l, k , e, y, c

)
= C(c)D̂e

(
l, k , e, y

)

(11)EEE1 = C(c) =
Dc

(
l, k , e, y, c

)

D̂
(
l, k , e, y

)

(12)EEE2 = C(c) =
De

(
l, k , e, y, c

)

D̂
(
l, k , e, y

)

7 See Note 5 for the separability assumption. However, the distance function of Färe et al. (1996) is considered for the 
reduction of all inputs.
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(13)

[
Dc

(
l′i , k

′
i , e

′
i, y

′
i, c

′
i

)]−1
= min β

s.t.

I∑

i=1

ziyi ≥ y′i

I∑

i=1

zici = βc′i

I∑

i=1

zili ≤ l′i

I∑

i=1

ziki ≤ k ′i

I∑

i=1

ziei ≤ βe′i

I∑

i=1

zi = 1

zi ≥ 0, i = 1, ..., I

(14)

[
De

(
l′i , k

′
i , e

′
i, y

′
i, c

′
i

)]−1
= min θ

s.t.

I∑

i=1

ziyi ≥ y′i

I∑

i=1

zici = c′i

I∑

i=1

zili ≤ l′i

I∑

i=1

ziki ≤ k ′i

I∑

i=1

ziei ≤ θe′i

I∑

i=1

zi = 1

zi ≥ 0, i = 1, ..., I



Page 8 of 26Shimizu and Tiku  Journal of Economic Structures            (2023) 12:3 

To measure the EEE, this study uses one desirable and undesirable output each, and 
three inputs in the Japanese manufacturing industry covering 47 prefectures from 1990 
to 2012. This study extracts seven industries from the manufacturing sector: (1) food, 
beverages, and tobacco; (2) textile; (3) pulp and paper; (4) chemical, oil, and coal; (5) 
ceramic, stone, and clay; (6) iron and steel; and (7) machinery, while simultaneously 
analyzing the manufacturing industry as a whole. Thus, because our study applies pre-
fecture- and industry-level data in the Japanese manufacturing sector with a focus on 
energy use, we selected variables for which data can be obtained consistently. The vari-
ables used in this study are as follows:

• Desirable output: real added value (y).
• Undesirable output:  CO2 emissions (c).
• Inputs: employed people (l), real capital stock (k), and energy use (e).8

Real added value, employed people, and real capital stock are sourced from the 
Regional-Level Japan Industrial Productivity (R-JIP) Database 2017.9 The data on  CO2 
emissions and energy use were sourced from the Energy Consumption Statistics by Pre-
fecture (ECSP).10 This study uses  CO2 emitted from the combustion of fossil fuels (coal, 
coal products, oil, oil products, natural gas, and town gas), excluding non-energy uti-
lization, while energy use is based on total energy consumption.11Finally, for the above 

(15)

[
D̂
(
l′i , k

′
i , e

′
i, y

′
i

)]−1
= min �

s.t.

I∑

i=1

ziyi ≥ y′i

I∑

i=1

zili ≤ l′i

I∑

i=1

ziki ≤ k ′i

I∑

i=1

ziei ≤ �e′i

I∑

i=1

zi = 1

zi ≥ 0, i = 1, ..., I

8 We only selected energy use as the intermediate goods data because other data have rarely been included in previous 
studies and are difficult to obtain at the prefecture- and industry-level in the Japanese manufacturing sector.
9 The R-JIP 2017 is provided by the Research Institute of Economy, Trade and Industry (RIETI) in Japan (https:// www. 
rieti. go. jp/ jp/ datab ase/R- JIP20 17/ index. html). The unit of added value and capital stock are million yen at 2000 constant 
prices.
10 The ECSP is provided by Agency for Natural Resources and Energy in Japan (https:// www. enecho. meti. go. jp/ stati 
stics/ energy_ consu mption/ ec002/).
11 Since the ECSP is available for the data of the carbon unit, we obtain  CO2 emissions by multiplying carbon output by 
44/12, which is the ratio of molecular weight  CO2 to atomic weight of carbon. The unit of  CO2 emissions and energy use 
are thousand tons of  CO2 equivalent and terajoule, respectively.

https://www.rieti.go.jp/jp/database/R-JIP2017/index.html
https://www.rieti.go.jp/jp/database/R-JIP2017/index.html
https://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/
https://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/
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Table 1 Summary statistics of variables

Variables Units Mean Median Maximum Minimum Std. dev

Food, beverages, and tobacco

 Real added value (y) Million yen (2000 prices) 332314 212359 1278313 25831 284742

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

568 366 2068 60 466

 Employed people (l) People 31453 22192 121441 5852 24502

 Real capital stock (k) Million yen (2000 prices) 372827 231899 1305731 28347 318060

 Energy consumption (e) Terajoule 11333 7052 41814 1303 9549

Textile

 Real added value (y) Million yen (2000 prices) 63905 37304 617463 1943 77630

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

232 56 2086 3 373

 Employed people (l) People 19650 13537 148538 983 20548

 Real capital stock (k) Million yen (2000 prices) 154139 94663 1210220 3123 176079

 Energy consumption (e) Terajoule 3922 1130 31522 44 5710

Pulp and paper

 Real added value (y) Million yen (2000 prices) 59981 32758 360166 − 1727 69733

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

575 198 5762 2 1055

 Employed people (l) People 6810 4046 42291 388 7845

 Real capital stock (k) Million yen (2000 prices) 141531 73247 945025 2874 163386

 Energy consumption (e) Terajoule 12800 5501 93408 37 20170

Chemical, oil, and coal

 Real added value (y) Million yen (2000 prices) 292767 141987 2185619 1396 404161

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

1917 480 18667 1 3289

 Employed people (l) People 10810 5714 102438 207 15603

 Real capital stock (k) Million yen (2000 prices) 604649 317784 3525714 2552 712295

 Energy consumption (e) Terajoule 81467 11043 977492 79 160293

Ceramic, stone, and clay

 Real added value (y) Million yen (2000 prices) 74901 48263 457617 1036 71782

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

842 333 10334 5 1341

 Employed people (l) People 9318 6425 61756 502 8712

 Real capital stock (k) Million yen (2000 prices) 126777 85970 616370 9249 115114

 Energy consumption (e) Terajoule 12278 4412 125699 68 17528

Iron and steel

 Real added value (y) Million yen (2000 prices) 235456 132046 1533589 9837 275306

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

3636 368 26,694 5 6553

 Employed people (l) People 32590 18042 217713 2496 37726

 Real capital stock (k) Million yen (2000 prices) 713576 356811 3637058 20743 849554

Energy consumption (e) Terajoule 49672 8413 346362 88 82447

 Machinery

 Real added value (y) Million yen (2000 prices) 1184930 654098 11356088 1628 1506677

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

341 206 3121 0 449

 Employed people (l) People 102478 55467 600038 819 118072

 Real capital stock (k) Million yen (2000 prices) 2033531 1151843 17620662 4018 2589019

 Energy consumption (e) Terajoule 11984 7891 107622 3 13465

Manufacturing

 Real added value (y) Million yen (2000 prices) 2557873 1728268 15588344 188825 2641022



Page 10 of 26Shimizu and Tiku  Journal of Economic Structures            (2023) 12:3 

seven manufacturing industries, we selected them by extracting only those industries for 
which data can be obtained consistently from the R-JIP 2017 and the ECSP.12 The sum-
mary statistics for variables are shown in Table 1.

3.2  Measuring results

Figure 1 shows the changes in EEE1 and EEE2 for the manufacturing sector in 1990–
2012, where the scores of EEE1 are significantly higher than those of EEE2 (EEE1 > EEE2). 
Thus, incorporating  CO2 emission reduction with energy use reduction such as of EEE1 
yields a higher index than its EEE2 counterpart which only considers the reduction of 
energy use. Moreover, the results of EEE2 clearly show that the EEE had shifted from an 
upward to a downward trend since the end of the 1990s, especially following the Asian 
Crisis (1997–1998) and the Financial Crisis (2007–2008). In particular, the EEE plunged 
after 2008, owing to declining added value and subsequent energy efficiency. This phe-
nomenon was observed not only in Japan but also in other high-income countries (Rak-
shit and Mandal 2020).

Table 1 (continued)

Variables Units Mean Median Maximum Minimum Std. dev

  CO2 emissions (c) Thousand tons of  CO2 
equivalent

8327 3405 46,151 343 9788

 Employed people (l) People 263881 162009 1711006 26901 274299

 Real capital stock (k) Million yen (2000 prices) 4671860 3198756 28087757 266401 4726436

 Energy consumption (e) Terajoule 189580 71222 1358883 11283 239233

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

EEE1 EEE2

Fig. 1 Changes in EEE1 and EEE2 for the manufacturing sector (1990–2012). The values in the figure are the 
arithmetic mean based on the measurement results by prefecture

12 In this study, we categorized the industries based on the SNA (System of National Accounts) classification.
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Figure 2 shows the changes in EEE1 and EEE2 by light industry. Considering the EEE1 
measurement for the light industry between 1990 and 2012, higher scores are observed 
in “food, beverages, and tobacco” followed by “textile” and “pulp and paper” consecu-
tively, whose annual trends are almost strictly untangled. In the industry of “pulp and 
paper,” a noteworthy improvement was discovered between 1994 and 1995, while a 
notable decline occurred between 2010 and 2012. Meanwhile, in the EEE2 measure-
ment, annual trends between 1990 and 2012 for “textile” and “pulp and paper” showed 
a tendency of improvement albeit inconsistent, where its conspicuous advancement is 
observed between 1993 and 1997, and 1994 and 1997, respectively. However, a decline 
occurred in “pulp and paper” between 2010 and 2012. In the industry of “food, bever-
ages, and tobacco,” despite relative stability in the studied period, its score was gradually 
reduced between 1990 and 2012. Therefore, these results indicate that the light industry 
had failed to improve the EEE continuously since the end of the 1990s.

Figure 3 shows the changes in EEE1 and EEE2 by heavy industry, which have a fluc-
tuating trend than light industries. Although the scores of “iron and steel” were higher 
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Fig. 2 Changes in EEE1 and EEE2 by light industry (1990–2012). The values in the figure are the arithmetic 
mean of each industry based on the measurement results by prefecture
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Fig. 3 Changes in EEE1 and EEE2 by heavy industry (1990–2012). The values in the figure are the arithmetic 
mean of each industry based on the measurement results by prefecture
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among others between 1990 and 2005, they had reduced significantly since the late 
2000s. This downtrend had also occurred with “ceramic, stone, and clay” at the end 
of the 2000s, which was the rock-bottom for the whole heavy industry. Meanwhile, 
“machinery” had led as the best frontier. Likewise, an increasing trend was observed 
with “chemical, oil, and coal” since the late 2000s. Therefore, these results indicate that 
“ceramic, stone, and clay” and “iron and steel” had tended to deteriorate the EEE since 
the late 2000s albeit rather inconsistent for “ceramic, stone, and clay,” as opposed to 
“chemical, oil, and coal” and “machinery.” These results are consistent with the findings 
of a previous study that higher energy efficiency in machinery industries was also found 
by Honma and Hu (2013).

However, Table  2 shows the annual mean of EEE1 and EEE2 for the manufactur-
ing sector by prefecture. The scores vary by prefecture, with ranges being 0.150–
1.000 and 0.142–1.000, respectively. Regardless of the type of EEE, Tokyo, Aichi, and 
Okinawa lead as the frontier prefectures, whereas Hokkaido, Hiroshima, and Fukuoka 
are among the least efficient prefectures. In comparison to previous studies focusing 
on the results of EEE2, which is the indicator considered for energy reduction, Hok-
kaido is the prefecture with the lowest score, as well as Niigata, Ehime, and other 
prefectures located in the Pacific Belt Zone (i.e., Ibaraki, Okayama, Hiroshima, and 
Fukuoka) tend to be more inefficient. These results are consistent with the findings of 
Honma and Hu (2008, 2009) on the lowest environmental efficiency in Hokkaido and 
lower energy efficiency in some regions within Pacific Belt Zone.

Figures 4 and 5 show the annual mean of EEE1 and EEE2 in seven manufacturing 
industries by region. Compared to Figs. 4 and 5, the scores of EEE2 vary widely across 
regions than those of EEE1. To grasp trends between regions, focusing on the results 
of EEE1, the results present a significant variation in scores among industries in the 
Hokkaido and Tohoku, Chugoku and Shikoku, and Kyushu and Okinawa regions. 
Meanwhile, more efficient industries are comparatively concentrated in the Kanto, 
Chubu, and Kinki regions, which include a major metropolitan area. Therefore, inten-
sive improvement in local regions might be essential.

4  Panel data analysis
4.1  Models and data

To investigate the influencing factors of EEE, this study estimates the following panel 
data models for EEE1 and EEE2:

[Model 1]

and
[Model 2]

where the subscripts i and t represent the prefecture and year, respectively. The depend-
ent variables EEE1 and EEE2 are measured in the previous section. For the explanatory 

(16)EEE1i,t = β1GDPCi,t + β2
(
GDPCi,t

)2
+ β3ISi,t + β4EIi,t + β5µt + ηi + εi,t

(17)EEE2i,t = β1GDPCi,t + β2ISi,t + β3EIi,t + β4µt + ηi + εi,t
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Table 2 Annual mean of EEE1 and EEE2 for the manufacturing sector by prefecture (1990–2012)

Prefecture EEE1 EEE2

Hokkaido 0.653 0.142

Aomori 0.804 0.294

Iwate 0.705 0.423

Miyagi 0.932 0.344

Akita 0.857 0.780

Yamagata 0.981 0.797

Fukushima 0.773 0.583

Ibaraki 0.915 0.288

Tochigi 0.957 0.852

Gunma 0.964 0.769

Saitama 0.808 0.571

Chiba 0.957 0.674

Tokyo 1.000 1.000

Kanagawa 0.936 0.763

Niigata 0.811 0.284

Toyama 0.944 0.510

Ishikawa 0.936 0.802

Fukui 0.728 0.473

Yamanashi 0.987 0.945

Nagano 0.928 0.911

Gifu 0.889 0.437

Shizuoka 0.982 0.889

Aichi 1.000 1.000

Mie 0.763 0.503

Shiga 0.994 0.923

Kyoto 0.938 0.845

Osaka 0.726 0.493

Hyogo 0.554 0.501

Nara 0.998 0.998

Wakayama 0.908 0.443

Tottori 0.972 0.972

Shimane 0.966 0.954

Okayama 0.897 0.174

Hiroshima 0.150 0.150

Yamaguchi 0.937 0.622

Tokushima 0.971 0.778

Kagawa 0.893 0.441

Ehime 0.945 0.191

Kochi 0.772 0.772

Fukuoka 0.425 0.159

Saga 0.961 0.808

Nagasaki 0.984 0.952

Kumamoto 0.910 0.550

Oita 0.931 0.524

Miyazaki 0.962 0.383

Kagoshima 0.949 0.800

Okinawa 1.000 1.000



Page 14 of 26Shimizu and Tiku  Journal of Economic Structures            (2023) 12:3 

variables, GDPC stands for gross domestic product (GDP) per capita, IS is the industry 
share, and EI is the energy intensity. ηi is the unobservable fixed effect by prefecture, μt is 
the linear trend showing a common time effect, and ε is an error term.
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Fig. 4 Annual mean of the EEE1 in seven manufacturing industries by region (1990–2012). The regional 
classification is partially modified and integrated based on the Ministry of Economy, Trade and Industry (METI) 
of Japan
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of Japan



Page 15 of 26Shimizu and Tiku  Journal of Economic Structures            (2023) 12:3  

Following Kumar and Khanna (2009), who conducted a panel data analysis, our model 
includes the EEE factors associated with development level, industry structure, and 
technology progress. In this research, our panel data are constructed for each industry 
and analyzed empirically for the period 1990–2012.

GDPC is the proxy for the level of economic development and is shown by the real 
GDP divided by population. Equation (16) shows a U-shaped relationship between EEE1 
and GDP per capita, which is intended to investigate the environmental Kuznets curve 
(EKC) hypothesis. This is because EEE1 considers not only saving energy but also reduc-
ing  CO2. Therefore, the estimated parameters of the GDPC are expected to satisfy β1 < 0 
and β2 > 0. The turning point of GDP per capita was calculated as (− β1/2β2). However, 
Eq.  (17) examines if there is a linear relationship between EEE2 and GDP per capita, 
and the estimated parameter is expected to be positive. This is because there is always 
an incentive to improve energy efficiency, and EEE2 only focuses on saving energy with-
out considering  CO2 reduction. Therefore, the model is not incorporated into testing the 
EKC hypothesis. The real GDP at 2000 constant prices (million yen) and the total popu-
lation are sourced from the R-JIP 2017.

IS is the proxy for the change in industrial structure and is represented by the ratio 
of each industry to manufacturing total, which is calculated using the nominal added 
value.13 As industry share reflects the degree of industrial concentration, the EEE 
is expected to improve as its power increases. Thus, the estimated parameter of IS is 
expected to be positive. The nominal added value was sourced from the R-JIP 2017.

EI is a proxy for the progress of energy-saving technology and is used as energy inten-
sity, which is measured by the total energy consumption divided by the real added value, 
for each industry. Given that the EEE is expected to improve as technology advances, the 
estimated parameter of EI is expected to be negative. The real added value at 2000 constant 
prices (million yen) and total energy consumption (terajoule) were sourced from the R-JIP 
2017 and the ECSP, respectively. The descriptive statistics of variables are summarized in 
Table 3.

To examine the influencing factors, this study adopts the error correction model of the 
ARDL approach presented by Pesaran et al. (1999). There are three advantages to employing 
the model, considering the use of long-term panel data in our study. First, if there are data 
with unit roots, the long-term panel data are likely to be exposed to risk of non-stationary 
effects. However, the model can simultaneously incorporate stationary and non-stationary 
variables. Second, if the slope parameters are not homogeneous across cross-sectional 
units, slope heterogeneity could bias the estimation results (Pesaran and Smith 1995). How-
ever, this model allows parameter heterogeneity. Third, the model can be divided into a 
long-run effect and a short-run effect on the dependent variable. It is important to clarify 
the long-run relationship to provide policymakers with practical information.

In this study, our panel data models are estimated using the PMG estimator developed by 
Pesaran et al. (1999), which has been applied to empirical studies related to  CO2 emissions, 
such as Martínez-Zarzoso and Bengochea-Morancho (2004) and Iwata et al. (2011). The 
estimator assumes that the long-run coefficients are homogeneous across cross-sectional 

13 When estimating a model for the entire manufacturing industry, the variable is measured by the ratio of nominal 
added value in the manufacturing sector to nominal GDP.
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units, while the short-run coefficients are heterogeneous, as are the intercepts and the 
error correction coefficients. The PMG method is established by the ARDL approach, and 
Eqs. (16) and (17) are built into an ARDL (p, q) model as follows:

Table 3 Descriptive statistics of variables

Variables Abbrev Mean Median Maximum Minimum Std. dev

GDP per capita GDPC 3.401368 3.289773 7.140661 2.149718 0.738384

Food, beverages, and tobacco

 Environmental energy efficiency EEE1 0.920810 0.968887 1.000000 0.226224 0.135005

EEE2 0.601457 0.532118 1.000000 0.173755 0.243965

 Industry share IS 0.172521 0.152269 0.502555 0.037058 0.091954

 Energy intensity EI 0.039409 0.038534 0.090207 0.010942 0.015266

Textile

 Environmental energy efficiency EEE1 0.857266 0.939910 1.000000 0.010504 0.204961

EEE2 0.615083 0.657794 1.000000 0.002600 0.338428

 Industry share IS 0.037548 0.025726 0.295093 0.002131 0.037052

 Energy intensity EI 0.074382 0.035895 1.108141 0.000979 0.113393

Pulp and paper

 Environmental energy efficiency EEE1 0.805133 0.920144 1.000000 0.115519 0.229445

EEE2 0.592195 0.563822 1.000000 0.020474 0.346233

 Industry share IS 0.032359 0.021934 0.233324 − 0.007815 0.032804

 Energy intensity EI 0.244605 0.134847 13.62567 − 6.084518 0.564507

Chemical, oil, and coal

 Environmental energy efficiency EEE1 0.767697 0.831976 1.000000 0.026864 0.239972

EEE2 0.506038 0.411533 1.000000 0.008014 0.365214

 Industry share IS 0.117862 0.080769 0.575739 0.005159 0.114533

 Energy intensity EI 0.217801 0.101229 2.143574 0.005064 0.288506

Ceramic, stone, and clay

 Environmental energy efficiency EEE1 0.752341 0.832878 1.000000 0.011854 0.256517

EEE2 0.491862 0.419944 1.000000 0.006638 0.355140

 Industry share IS 0.040689 0.033703 0.152767 0.003670 0.025904

 Energy intensity EI 0.165686 0.092359 1.983216 0.002552 0.218453

Iron and steel

 Environmental energy efficiency EEE1 0.819577 0.921584 1.000000 0.010287 0.249648

EEE2 0.553741 0.511257 1.000000 0.010287 0.351589

 Industry share IS 0.114141 0.093053 0.571246 0.014973 0.068371

 Energy intensity EI 0.173685 0.075748 2.228091 0.002938 0.232465

Machinery

 Environmental energy efficiency EEE1 0.793271 0.834861 1.000000 0.057321 0.203275

EEE2 0.630397 0.619217 1.000000 0.106591 0.252684

 Industry share IS 0.367686 0.372048 0.693636 0.007203 0.136465

 Energy intensity EI 0.014879 0.012336 0.336516 0.000417 0.016248

Manufacturing

 Environmental energy efficiency EEE1 0.871366 0.943024 1.000000 0.077966 0.181047

EEE2 0.626923 0.663879 1.000000 0.027070 0.316362

 Industry share IS 0.248252 0.248623 0.518462 0.054886 0.087724

 Energy intensity EI 0.082775 0.051131 0.414106 0.006202 0.080733
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where Xi,t is the K × 1 vector of explanatory variables, δi,j is the K × 1 coefficient vector, 
λi,j is the coefficient of the lagged dependent variables, and γi is the coefficient of the lin-
ear trend. Equation (18) can be rewritten as the following error correction model:

where

In Eq. (19), the parenthesis is the error correction term, and φi is its coefficient, which 
is expected to be significantly negative to exist a long-run relationship. In the PMG 
estimation, the short-run coefficient vector is δ∗i, j . The long-run coefficient vector is θi, 
which is assumed to be homogeneous (that is, θi = θ for all i) and is estimated using the 
maximum likelihood method (Pesaran et al. 1999).

This study uses the following four procedures to estimate the EEE factors.14 First, to 
examine the independence among cross-sectional units in the panels, the cross-section 
dependence (CD) tests are implemented by a variety of tests: the Lagrange multiplier 
(LM) test of Breusch and Pagan (1980), the scaled LM and CD tests of Pesaran (2004), 
and the bias-corrected scaled LM test of Baltagi et al. (2012). Second, if there is cross-
sectional dependence, to investigate the stationarity of the panels, the panel unit root 
test is selected for the cross-sectionally augmented Im, Pesaran, and Shin (CIPS) test 
as done by Pesaran (2007). The CIPS panel unit root test can control the problem of 
cross-sectional dependence and then identify whether each variable is integrated with 
order zero or one, that is, I(0) or I(1). Third, if there are unit roots in the panels, the 
panel cointegration tests of Pedroni (1999, 2004) are conducted to confirm a cointegra-
tion relationship among the variables. Finally, the PMG estimation is carried out based 

(18)EEEi,t =
∑p

j=1
�i,jEEEi,t−j +

∑q

j=0
δ′i,jXi,t−j + γiµt + ηi + εi,t

(19)
�EEEi,t =φi

(
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14 This study uses EViews 12 to carry forward the procedures.
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Table 4 Cross-section dependence (CD) tests

*** p < 0.01

Variables Breusch-Pagan LM Pesaran scaled LM Bias-corrected 
scaled LM

Pesaran CD

GDPC 18389.50*** 372.2473*** 371.1791*** 133.5894***

(GDPC)2 18241.00*** 369.0536*** 367.9854*** 133.0527***

Food, beverages, and tobacco

 EEE1 2197.673*** 24.01586*** 22.94767*** 7.771195***

 EEE2 6475.707*** 116.0219*** 114.9537*** 12.48474***

 IS 7431.661*** 136.5813*** 135.5131*** 35.91282***

 EI 6973.332*** 126.7241*** 125.6560*** 25.01527***

Textile

 EEE1 2176.865*** 23.56835*** 22.50017*** 6.903700***

 EEE2 4172.194*** 66.48113*** 65.41295*** 8.339922***

 IS 20616.37*** 420.1397*** 419.0716*** 136.3134***

 EI 15420.77*** 308.4001*** 307.3319*** 109.2848***

Pulp and paper

 EEE1 4003.710*** 62.85761*** 61.78943*** 6.478504***

 EEE2 3915.745*** 60.96579*** 59.89760*** 23.17551***

 IS 4069.906*** 64.28127*** 63.21309*** 22.34278***

 EI 4222.092*** 67.55427*** 66.48609*** 8.143726***

Chemical, oil, and coal

 EEE1 2658.673*** 33.93040*** 32.86222*** 0.945503

 EEE2 3871.829*** 60.02130*** 58.95312*** 13.73676***

 IS 6639.121*** 119.5364*** 118.4682*** 11.67073***

 EI 4970.827*** 83.65703*** 82.58884*** 5.456965***

Ceramic, stone, and clay

 EEE1 5275.150*** 90.20198*** 89.13380*** 5.839171***

 EEE2 3688.423*** 56.07685*** 55.00867*** 25.32286***

 IS 9095.209*** 172.3585*** 171.2904*** 55.84299***

 EI 5660.663*** 98.49307*** 97.42489*** 11.66218***

Iron and steel

 EEE1 2961.432*** 40.44174*** 39.37356*** 6.172025***

 EEE2 3841.769*** 59.37481*** 58.30662*** 1.358466

 IS 5090.303*** 86.22656*** 85.15838*** 28.29789***

 EI 6670.311*** 120.2072*** 119.1390*** 38.67571***

Machinery

 EEE1 3623.707*** 54.68504*** 53.61685*** 9.014001***

 EEE2 4221.871*** 67.54952*** 66.48134*** 21.49952***

 IS 7532.853*** 138.7575*** 137.6894*** 41.93699***

 EI 15417.91*** 308.3384*** 307.2703*** 118.6359***

Manufacturing

 EEE1 2898.726*** 39.09313*** 38.02495*** 3.117450***

 EEE2 4979.578*** 83.84523*** 82.77705*** 8.190819***

 IS 9386.530*** 178.6239*** 177.5557*** 75.65815***

 EI 13290.18*** 262.5782*** 261.5100*** 93.76585***
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Table 5 CIPS panel unit root tests

The tests in the table select a single lag for the ADF (augmented Dickey–Fuller) regression and report the truncated CIPS 
statistic. The constants and trends are deterministic terms included in the tests
* p < 0.1
** p < 0.05
*** p < 0.01

Variables Levels First differences Order

Constant Constant and trend Constant Constant and trend

GDPC − 2.17864** − 2.40279 – – I(0)

(GDPC)2 − 2.21616** − 2.42996 – – I(0)

Food, beverages, and tobacco

 EEE1 − 2.29363*** − 2.86753*** – – I(0)

 EEE2 − 1.77151 − 2.48939 − 3.18313*** − 3.29856*** I(1)

 IS − 1.10926 − 2.25906 − 3.19999*** − 3.47456*** I(1)

 EI − 1.50784 − 2.18971 − 2.90571*** − 3.00765*** I(1)

Textile

 EEE1 − 2.08487* − 2.05518 – – I(0)

 EEE2 − 1.34609 − 1.85256 − 3.64690*** − 3.80476*** I(1)

 IS − 2.97759*** − 3.40605*** – – I(0)

 EI − 1.46702 − 1.67085 − 3.09253*** − 4.53639*** I(1)

Pulp and paper

 EEE1 − 1.98447 − 2.33212 − 3.66913*** − 3.66226*** I(1)

 EEE2 − 1.79496 − 1.92754 − 3.30750*** − 3.33836*** I(1)

 IS − 1.58663 − 2.03860 − 2.99590*** − 3.04617*** I(1)

 EI − 1.76187 − 2.29168 − 3.17031*** − 3.30207*** I(1)

Chemical, oil, and coal

 EEE1 − 1.69694 − 2.08245 − 3.44084*** − 3.54160*** I(1)

 EEE2 − 2.05526* − 2.39509 – – I(0)

 IS − 1.61122 − 2.31463 − 3.43646*** − 3.56194*** I(1)

 EI − 2.11258* − 2.13129 – – I(0)

Ceramic, stone, and clay

 EEE1 − 1.68040 − 2.00372 − 3.19011*** − 3.38972*** I(1)

 EEE2 − 1.99514 − 2.14758 − 3.61700*** − 3.66830*** I(1)

 IS − 2.11295* − 2.40269 – – I(0)

 EI − 1.08257 − 1.77552 − 2.68741*** − 2.91127*** I(1)

Iron and steel

 EEE1 − 2.17211** − 2.46971 – – I(0)

 EEE2 − 1.78588 − 1.96017 − 3.09790*** − 3.20276*** I(1)

 IS − 1.68238 − 2.48940 − 3.40149*** − 3.64857*** I(1)

 EI − 1.71261 − 2.13523 − 3.16079*** − 3.15379*** I(1)

Machinery

 EEE1 − 1.36732 − 1.98537 − 3.29687*** − 3.45063*** I(1)

 EEE2 − 1.50001 − 2.23085 − 3.37202*** − 3.51415*** I(1)

 IS − 2.25187** − 2.28157 – – I(0)

 EI − 2.66379*** − 3.21616*** – – I(0)

Manufacturing

 EEE1 − 1.84003 − 2.65923** – – I(0)

 EEE2 − 1.43372 − 2.44986 − 3.73975*** − 3.80389*** I(1)

 IS − 1.61702 − 2.20335 − 3.47426*** − 3.78557*** I(1)

 EI − 1.54173 − 2.50029 − 3.16545*** − 3.17359*** I(1)
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on the ARDL (1, 1) model by setting p = q = 1 in Eq. (19), which has been broadly used 
in empirical studies such as Li et al. (2016) and Salahuddin et al. (2016).15 However, the 
cross-sectional dependence, which is often caused by unobservable common factors, is 
modeled by including a linear trend.

4.2  Estimation results

Table 4 presents the results of the CD tests. The null hypothesis of no cross-section cor-
relation was mostly rejected at 1% for all the variables. This result indicates that there 
is a cross-sectional dependence in each variable, and consequently, it is appropriate to 
choose the CIPS panel unit root test. Table 5 presents the results of the CIPS test, which 
is the null hypothesis of the unit root. The results show a mixed order of integration 
in our variables, and consequently, the PMG estimation is adequate in our panel data. 
Moreover, we examine whether there is a cointegrating relationship among the variables 
using the Pedroni panel cointegration tests. Table 6 presents the results of the Pedroni 
test. In all the models, the null hypothesis of no cointegration is rejected at 5% for four 

Table 6 Pedroni panel cointegration tests

The test of the table selects the lag length based on the SIC and uses the nonparametric Bartlett kernel as well as the 
bandwidth based on the Newey–West method. The constants and trends are deterministic terms included in the tests
** p < 0.05
*** p < 0.01

Panel 
v-statistic

Panel rho-
statistic

Panel 
PP-statistic

Panel ADF-
statistic

Group 
rho-
statistic

Group 
PP-statistic

Group ADF-
statistic

Food, beverages, and tobacco

 Model 1 − 0.633522 1.186253 − 11.06104*** − 9.342591*** 3.191868 − 14.42343*** − 12.47216***

 Model 2 0.524228 3.071354 − 1.858378** − 3.083415*** 3.074340 − 8.121298*** − 8.188508***

Textile

 Model 1 − 3.260886 0.331943 − 13.47186*** − 13.51722*** 3.627371 − 14.75801*** − 11.75723***

 Model 2 − 1.268942 − 0.247425 − 9.276928*** − 9.091001*** 0.936795 − 12.41171*** − 10.86444***

Pulp and paper

 Model 1 − 1.116840 2.353719 − 5.272305*** − 5.810947*** 4.186269 − 11.65780*** − 11.00601***

 Model 2 − 2.275577 1.352191 − 5.458742*** − 6.423706*** 3.049061 − 10.56902*** − 10.60219***

Chemical, oil, and coal

 Model 1 − 3.351159 1.727338 − 8.860695*** − 9.665512*** 3.502405 − 12.61057*** − 10.21496***

 Model 2 0.810342 − 0.998458 − 10.84296*** − 10.16332*** 2.123284 − 12.58159*** − 11.40520***

Ceramic, stone, and clay

 Model 1 − 1.877550 2.779795 − 9.887294*** − 11.13769*** 4.744119 − 15.68208*** − 14.48236***

 Model 2 − 0.211758 1.340087 − 8.980306*** − 11.52403*** 4.450108 − 9.940711*** − 13.07724***

Iron and steel

 Model 1 − 1.818146 3.258006 − 4.952851*** − 7.471220*** 4.731502 − 9.845332*** − 9.396072***

 Model 2 − 3.388243 0.599767 − 6.475321*** − 8.831578*** 2.740432 − 8.065791*** − 9.920696***

Machinery

 Model 1 − 3.343544 4.425752 − 2.744002*** − 4.061561*** 5.724367 − 4.840543*** − 5.351731***

 Model 2 − 2.486851 2.123776 − 3.672093*** − 5.515955*** 5.406364 − 1.050780 − 3.824743***

Manufacturing

 Model 1 − 3.998727 1.696246 − 9.030381*** − 9.066138*** 4.470256 − 14.07822*** − 11.55655***

 Model 2 − 0.687899 0.269362 − 9.502857*** − 11.78776*** 4.996930 − 3.893301*** − 7.458334***

15 Additionally, if we limit the lag length to a maximum of 3, considering the number of years of data used, our model 
essentially selects ARDL (1, 1) based on the SIC (Schwarz information criterion).
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of the seven statistics, excluding Model 2 for machinery. Hence, it is difficult to analyze 
whether the variables can be assumed to have a cointegrating relationship.

However, Tables 7 and 8 report the estimation results of the PMG for EEE1 and EEE2, 
respectively. In both tables, the error correction coefficients are significantly estimated 
at the 1% level and are confirmed to be negative in all the models. This means that the 
models have a long-run equilibrium relationship among the variables.

In the long-run coefficients of Table 7, the parameters of GDPC and its square are sig-
nificant at the 5% level, excluding “chemical, oil, and coal” and “iron and steel.” The esti-
mated parameters reflect an inverted U-shaped relationship between EEE1 and GDP per 
capita, while the turning point of GDP per capita falls within the collected data. This 
result indicates that there is no EKC pattern, contrary to our expectations. However, in 
the long-run coefficients of Table 8, the parameters of GDPC are significantly estimated 
to be positive at 5% level, excluding “food, beverages, and tobacco” and “textile.” As 

Table 7 Pooled mean group (PMG) estimation results in the EEE1

The values in parentheses are standard errors. The turning points are GDP per capita at 2000 constant prices
* p < 0.1
** p < 0.05
*** p < 0.01

Variable Food, 
beverages, 
and tobacco

Textile Pulp and 
paper

Chemical, oil, 
and coal

Ceramic, 
stone, and 
clay

Iron and steel Machinery Manufacturing

Long-run coefficients

 GDPC 0.147360*** 0.119176** 0.287689** 0.065143 0.317358*** 0.000987 0.770468*** 0.124310***

(0.044047) (0.050132) (0.114281) (0.069830) (0.101730) (0.050811) (0.181140) (0.038482)

 (GDPC)2 − 0.013150*** − 0.016931** − 0.053956*** − 0.002060 − 0.040417*** 0.000275 − 0.084354***− 0.014479***

(0.004949) (0.006778) (0.015034) (0.008642) (0.012120) (0.005466) (0.021488) (0.004587)

 IS 0.636207*** 0.800343*** − 1.182101*** 2.050849*** 1.584145*** 0.897043*** 0.696221*** 0.123055**

(0.068811) (0.262021) (0.325306) (0.309755) (0.393550) (0.175925) (0.191261) (0.056312)

 EI 2.619090*** 0.125938* − 0.549127*** 0.065448 − 0.526078*** 0.215417** 0.168755 0.236930**

(0.270163) (0.072922) (0.086130) (0.072448) (0.144798) (0.093065) (1.502901) (0.110316)

 Error cor-
rection 
coef-
ficient

− 0.579107*** − 0.604490*** − 0.417961*** − 0.467912*** − 0.559152*** − 0.442013*** − 0.397703***− 0.557076***

(0.060363) (0.058340) (0.043413) (0.067305) (0.057536) (0.049781) (0.043114) (0.054241)

Short-run coefficients

 ΔGDPC 0.872251 0.735941 − 0.160085 − 2.424064** 2.684560* − 0.755117 − 1.121660 − 0.514275

(0.875910) (0.867530) (0.578635) (1.164258) (1.550172) (0.972145) (1.027743) (0.600495)

 Δ(GDPC)2 − 0.156977 − 0.074715 0.034954 0.428707* − 0.472959* 0.091305 0.179237 0.093136

(0.130263) (0.127341) (0.088492) (0.227241) (0.250677) (0.174097) (0.161293) (0.106981)

 ΔIS 0.670795 − 1.067714 5.170944* 0.405509 1.391207 0.546000 0.275745 − 0.289220

(0.456197) (2.008301) (2.672574) (1.176597) (2.227386) (0.506880) (0.235868) (0.219094)

 ΔEI − 0.535951 0.150601 − 0.111445 0.266835 − 0.244567 − 1.106138 0.406767 − 3.527508***

(1.176269) (0.283678) (0.248756) (0.655872) (0.559241) (0.771286) (2.395601) (1.013906)

 Constant 0.252151*** 0.332681*** 0.232160*** 0.109252** 0.087599*** 0.338307*** − 0.391421***0.325640***

(0.034445) (0.045070) (0.031294) (0.043195) (0.025015) (0.041906) (0.046563) (0.037055)

 Trend − 0.002542*** 0.002464** 0.001951** − 0.000346 0.000467 − 0.002797** − 0.002589** − 0.000800

(0.000857) (0.001164) (0.000876) (0.001094) (0.001169) (0.001297) (0.001219) (0.000648)

 Observa-
tions

1034 1034 1034 1034 1034 1034 1034 1034

 Turning 
point 
(million 
yen)

5.60 3.52 2.67 – 3.93 – 4.57 4.29
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expected, the estimated parameters show a linear relationship between EEE2 and GDP 
per capita. Therefore, the EEE in the Japanese manufacturing industry tends to improve 
and then deteriorate or monotonically increase as economic development progresses.

Likewise, the estimation results of the other variables are also meaningful. The param-
eters of IS are significantly estimated to be positive at 5% level in Tables 7 and 8, or both, 
excluding “pulp and paper,” as expected. This result means that the EEE in the Japanese 
manufacturing industry is raised by expanding the industry share. This finding suggests 
that the EEE is likely to improve as industry concentration increases. For the industry 
of “pulp and paper,” which is significantly estimated to be negative, the results should 
be carefully interpreted and seem to be influenced by the consolidation of companies. 
However, it should be reconsidered in subsequent analysis.

Meanwhile, although the parameters of EI are significantly estimated in Tables 7 and 
8, or both, the sign of the coefficients is mixed. However, in the results of EEE2, which 
is the indicator focused on energy reduction, the parameters are estimated to be signifi-
cantly negative at the 5% level (Table 8), excluding “chemical, oil, and coal” and “iron and 
steel,” which is consistent with our expectations. This result suggests that the progress of 
energy-saving technology could lead to an increase in EEE through energy reduction in 
the Japanese manufacturing industry. In this regard, it is too early to draw any conclusions 
from the result. This is because most industries in Table 7 are significantly estimated to be 
positive, contrary to our expectations. The findings suggest that manufacturing compa-
nies have pushed for a review of energy use, such as alternatives to clean energy, despite 
little progress in reducing energy consumption. Therefore, it can be analyzed in future 
studies whether EI is appropriate as a proxy for the progress of energy-saving technology, 
as it has been typically used in empirical studies (Kumar and Khanna 2009).

5  Conclusion
This section summarizes the empirical results and derives the policy implications. For 
changes in the energy performance of Japan, some practical information was confirmed 
from the measurement results of the EEE in the manufacturing industry. The EEE of the 
entire manufacturing industry was at almost the same level or on a downward trend 
from late 1990 to 2012. However, the changes in the EEE have different movements by 
individual industries. Notably, the EEE had improved in “chemical, oil, and coal” and 
“machinery,” although it had deteriorated in “iron and steel” since the late 2000s. This 
finding indicates that the Japanese manufacturing industry had not been keeping in step 
with the improvement of EEE since the adoption of the Kyoto Protocol.

Meanwhile, the EEE of the entire manufacturing industry has different trends by each 
prefecture during the studied period. Tokyo, Aichi, and Okinawa were the most effi-
cient prefectures, whereas Hokkaido, Hiroshima, and Fukuoka were inefficient. How-
ever, more efficient industries tended to have comparatively concentrated in the Kanto, 
Chubu, and Kinki regions. Consequently, this finding suggests that the progress of each 
industry was relatively consistent by region.

Furthermore, some interesting results were obtained from the panel data analysis. First, 
the EEE was likely to improve and then deteriorate or monotonically increase with eco-
nomic development between 1990 and 2012. This implies that the improvement phase 
can occur because more advanced systems, skilled labor, and sophisticated facilities are 
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prepared as development increases. Therefore, policymakers should consider creating an 
institutional environment that encourages investment in human and physical capital in 
the environmental energy fields. Moreover, the EEE was raised by expanding the industry 
share during the study period. This indicates that strengthening industrial concentration on 
specific industries within the manufacturing industry is an improvement factor. It is neces-
sary to promote the selection and concentration of industries as a part of the environmental 
energy policy. Finally, the EEE, focusing on energy reduction, was likely to increase with 
the progress of energy-saving technology during that period. This suggests that efforts to 
conserve energy could be another improvement factor. It might be important to support the 
innovation of energy-saving technologies as part of the environmental energy strategy.

However, it should be noted that some analytical challenges remain in our research.
　Although the study period is limited to 1990–2012 due to data constraints, it would 
be valuable to extend the period and include the impact of the Paris Agreement in future 
research.16 In this study, it would be more beneficial to subdivide the manufacturing 
industry more than it is classified in the current survey. In addition, it would be desirable 
to verify the industry-wise trend and its influencing factors of the EEE using micro-level 
firm data. If the study can resolve these challenges, it will be possible to provide policy-
makers with more detailed information and solid evidence to help implement an effec-
tive environmentally friendly energy policy in Japan.
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