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Abstract 

The application of artificial intelligence (AI) across firms and industries warrants 
a line of research focused on determining its overall effect on economic variables. As 
a general-purpose technology (GPT), for example, AI helps in the production, market-
ing, and customer acquisition of firms, increasing their productivity and consumer 
reach. Aside from these, other effects of AI include enhanced quality of services, 
improved work accuracy and efficiency, and increased customer satisfaction. Hence, 
this study aims to gauge the impact of AI on the economy, specifically on long-run 
economic growth. This study conjectures a positive relationship between AI and eco-
nomic growth. To test this hypothesis, this study makes use of a panel dataset of coun-
tries from 1970 to 2019, and the number of AI patents as a measure of AI. A text search 
query is performed to distinguish AI patents from other types of innovations in a public 
database. Employing fixed effects and generalized method of moments (GMM) estima-
tion, this paper finds a positive relationship between AI and economic growth, which 
is higher than the effect of the total population of patents on growth. Furthermore, 
other results indicate that AI’s influence on growth is more robust among advanced 
economies, and more evident towards the latter periods of the dataset.
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1  Introduction
The developments in computer science and digital technology, including artificial intel-
ligence (AI) and machine learning, naturally led to their application in key sectors such 
as healthcare, finance, manufacturing, and transport.1 Their increasing use in industries 
has opened up questions as to whether these technologies may have an impact on eco-
nomic variables. In neoclassical and endogenous economic growth models, for example, 
technical change brings about increases in productivity, leading to economic growth. 
Hence, breakthroughs in computing technology should also entail increases in growth 
rates.

In particular, the last 60  years have witnessed a shift in production from tradi-
tional inputs to more information and communications technology (ICT)-based, 
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capital-intensive tools. The introduction of modern computers and the Internet in the 
early 1990s, and more recently, AI, led to changes in the methods of production. In keep-
ing with the rise of new technologies, Zeira (1998) proposed an economic growth model 
adopting technological innovations that reduce labor inputs but require more capital.2 
Furthermore, more recent empirical studies on the subject have found these technolo-
gies as potential sources of economies of scale (e.g., Nightingale 2000; Wang et al. 2011; 
Nchake and Shuaibu 2022). Thus, it is only expected that advancements in ICT may have 
a positive effect on overall productivity and economic growth.

This study continues this line of research by exploring the relationship between tech-
nical change, as manifested by modern developments in science and technology, and 
economic growth. Several economic papers have been published on the subject, of prox-
ying technology with various forms of knowledge and ICT measures (e.g., patents and 
scientific journals, Internet penetration, computer ownership, etc.). This paper is similar 
to past academic papers, yet with a special focus on AI as a newer form of technology.

Estimation results reveal a positive and significant impact of AI on long-run economic 
growth in a cross-country panel dataset. The magnitude of AI’s effect on growth is also 
higher than that of total patents. Furthermore, the contribution of AI to growth is more 
robust both for advanced economies and for the latter half of the period considered in 
the estimation.

2 � Literature review
Endogenous growth models are central to much of the existing literature on technology 
and economic growth. Arrow (1962) associates technology as a “by-product of ordinary 
production” through knowledge accumulation, aptly termed “learning-by-doing.” The 
process of learning through repetition and experience should manifest itself in increases 
in productivity, thus creating opportunities for economic growth.3 Arrow (1962) 
assumes that technical change, born out of knowledge and experience, is embodied in 
new physical capital, which then enters the production process and improves “produc-
tive efficiency.”4

The literature on technology and growth follows this line of thought, assuming that 
technological change increases capital productivity. In line with the Schumpeterian tra-
dition, Zeira (1998) presents a theoretical framework involving intermediate goods in 
production. Technology adoption increases the intensity of capital and replaces labor in 
the production process. Technology is then adopted if it increases output; however, as 
technology requires more capital input, not all countries can keep up with the techno-
logical frontier.5 The disparities in the levels of technology across countries then result in 
differences in overall output and productivity.

2  Zeira (1998) notes that standard economic growth models that involve technology adoption encourage the accumula-
tion of capital. However, this may not be necessary as “new technology increases output for any combination of inputs”.
3  Arrow (1962) assumes a competitive equilibrium. However, Dasgupta and Stiglitz (1988) reason that learning possibil-
ities can only translate into growth if “learning spillovers are complete.” In an oligopolistic market structure, for example, 
firms may not be able to learn “costlessly, completely, and instantaneously from the experience of others.”.
4  Arrow (1962) follows this idea from the standard neoclassical growth model. On the contrary, Bahk and Gort (1993) 
revealed that the effect of learning can also be disembodied from both capital and labor.
5  Zeira (1998) ascribes this to the wage differential across countries. Countries with lower wages tend to have lower pro-
ductivity; hence, they are unable to afford the high requirements of capital to adopt the latest technology.
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Meanwhile, Acemoglu and Restrepo (2018) have constructed a “task-based” frame-
work, treating automation and the creation of new tasks as types of technological 
innovation. Both types of technology are necessary to increase productivity. Initially, 
Acemoglu and Restrepo (2018) considered that all tasks could be done by labor, whereas 
“lower-indexed” tasks could and would be automated.6 However, automation requires 
some capital investment, thus raising the share of capital and decreasing the share of 
labor in production. This is counterbalanced, though, by creating new and more sophis-
ticated tasks, where labor has a “comparative advantage.” In the long run, there is a “sta-
ble, balanced growth path” where the two types of innovations coexist and grow at the 
same rate.7

The aforementioned theoretical works help explain the relationship between modern 
science and ICT developments and economic growth. However, empirical evidence on 
more recent forms of technological innovation, such as AI and machine learning, is still 
limited. This can be attributed to an insufficient amount of data both at the firm and at 
macro levels, especially when dealing with long-run growth.8 This study is an attempt to 
contribute to the body of literature on this subject despite limitations on data availabil-
ity. In the following discussion in this section, this paper will revisit some recent publica-
tions regarding the relationship between technical change and economic growth, using 
common scientific knowledge and technology variables.

In empirical studies, the number of patents and scientific journals are common meas-
ures of technological innovation. In the Schumpeterian context, patents represent own-
ership of monopoly rents from the invention of new technology. Firms aim for exclusive 
rights over these monopoly rents; thus, new technologies that improve productivity are 
continuously invented, while dismantling obsolete ones in the process—the so-called 
“creative destruction.” As better technologies are created, firms become more produc-
tive, possibly achieving increasing returns to scale status.9 Hence, countries with higher 
concentrations of patents may signal higher productivity and levels of production, and of 
course, national growth.10

On the other hand, scientific journals index the level of research and development 
(R&D). Based on standard growth models, technical progress is a product of knowledge 
accumulation, which is made possible through continuous R&D efforts. According to 
Kim and Lee (2015), academic articles as a measure of scientific knowledge have been 
regarded as a contributor to economic growth, citing scientific journals published by 
institutions and universities as sources of “patents and industrial technology.” Assuming 

6  Low-indexed tasks refer to tasks that require minimal skill. In general, low-indexed tasks are assigned to low-skilled 
labor.
7  Acemoglu and Restrepo (2018) attribute the stability of the growth path to “self-correcting forces” of the factor prices. 
Furthermore, as both types of innovation advance at the same rate, the long-run growth rate path is characterized by a 
constant labor share.
8  This study also suffers from this problem. For example, the chosen measure for AI may still not fully and accurately 
capture its effect on growth.
9  See Aghion and Howitt (1990).
10  Chu et al. (2016), however, claim that “patent breadth” only promotes growth in the short run by raising the “profit 
margin of monopolistic firms” and providing “more incentives for R&D.” Accordingly, patents reduce growth in the long 
run but expand the total number of firms. Further, they state that an R&D subsidy is a more appropriate policy for 
“stimulating long-run economic growth.”.
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academic knowledge from journal articles can be transformed into concrete technologi-
cal inputs for production, published research should then also contribute to overall pro-
ductivity and growth.11

However, Kim and Lee (2015) conclude that it is patents and not scientific journals 
that contribute to economic growth. They considered academic articles to be sources 
of scientific knowledge, whereas patents are embodiments of technological knowledge. 
Technological knowledge, though, is more a product of the private R&D efforts of firms 
than of scientific research from academic institutions. Using panel data estimation and 
evidence from Latin American economies, Kim and Lee (2015) found an insignificant 
effect of scientific knowledge, while patents indicated significant and positive impacts on 
economic growth.

Studies about patents and growth are numerous, often arriving at similar results (e.g., 
Lach 1995; Sinha 2008; Kim et  al. 2012). In an earlier work modeling innovation and 
entrepreneurship with economic growth, Wong et  al. (2005) found a significant and 
positive effect of patent grants as an indicator of innovation on country growth rates. 
In contrast, recent studies such as those by Sweet and Eterovic (2019) and Blind et al. 
(2022) found no significant effect of patents on economic growth.

In another recent study, Nguyen and Doytch (2022) found a positive and significant 
effect of total patents on economic growth for advanced economies, but the magnitude 
of the effect of the technology variable weakens for emerging economies.12 Moreover, 
ICT patents only contribute to economic growth among advanced economies. In addi-
tion, the authors found that total patents, regardless of domain, are not significant in the 
long run, but ICT patents remain positive and significant.

On the other hand, studies on the effect of scientific research, measured by the num-
ber of scientific journals, on cross-country growth tend to be mixed. As mentioned pre-
viously, Kim and Lee (2015) discovered no significant impact of scientific knowledge 
from academic articles on growth. Meanwhile, Ntuli et al. (2015) found differing results 
in determining causality between research output and growth among OECD countries. 
Research output exhibits “unidirectional causality” on growth in some countries such, 
as the United States, Finland, Hungary, and Mexico, but is negligible in other OECD 
members.

Existing literature suggests a weak or ambiguous relationship between academic 
research and national growth (e.g., Inglesi-Lotz et  al. 2014; Hatemi-J et  al. 2016).13 In 
contrast, Solarin and Yen (2016) obtained a positive relationship between research pub-
lications and economic growth using a cross-country panel dataset. They found that the 
effect was significant “irrespective of whether the focus is on developed countries or 
developing nations.” However, Solarin and Yen (2016) noted that the impact on growth is 
stronger in advanced economies.

11  Kim and Lee (2015), however, recognize that this might only be plausible among advanced countries, where viable 
“national innovation systems” and infrastructures enable scientific research to be put into effective commercial use.
12  This is similar to the finding of Kim et al. (2012), where they found no significant effect of patent intensity on growth 
among developing economies.
13  In relation to this, Lee et al. (2011) highlight a “mutual causation” between research publications and GDP among 
Asian economies. This causation, however, is less clear in Western countries.
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Interestingly, Mueller (2006) found that research output may be favorable to local eco-
nomic performance. Mueller (2006) analyzed the impact of private industry and univer-
sity R&D, along with measures of entrepreneurship and university-industry relations,14 
on regional aggregate output in West Germany. Regression results have established indi-
vidual, positive effects of each variable on regional economic performance.

Further, at the firm level, “intangible assets” such as “R&D, goodwill, brand equity, pat-
ents, copyrights, software, licenses, image, and organization” are “enhancers” of total fac-
tor productivity (TFP) (Nakatani 2021). Comparing firms within the ICT sector across 
five countries, intangible assets revealed a significant impact, though differing in magni-
tude, on the productivity of ICT firms across countries.15 This can be attributed to some 
countries already being at the forefront of the global technology frontier. Hence, the 
additional effect of intangible assets on firm productivity diminishes (Nakatani 2021).

This study, however, is more interested in a specific technological innovation different 
from ICT, namely AI, including machine learning. With AI swiftly becoming the new 
general-purpose technology (GPT) (Trajtenberg 2018), comparisons between AI and 
previous technologies, particularly ICT, have been raised (Lu and Zhou 2021). However, 
AI is considered to “impact a broader range of sectors,” leading to “different implications 
at the aggregate level” and an “unpredictable future development.” Furthermore, ICT is 
known to require high investments in capital over long periods, whereas AI can leverage 
data and cloud services that can help lower capital investments. These differences could 
potentially lead to a distinct “pathway” for AI adoption, different from that of previous 
technologies (Lu and Zhou 2021).

Because of the scarcity of data, there is a dearth of empirical evidence on the topic of 
AI as a driver of economic growth. Nonetheless, this article attempts to determine this 
relationship using an available measure that can indicate the level of AI per country.

2.1 � What is AI?

AI encompasses a broad category of technology, and there is not a single, widely accepted 
definition. However, international organizations have similar definitions of AI. The Euro-
pean Parliamentary Research Service (EPRS), for example, refers to AI as machines that 
perform “human-like cognitive processes,” namely, “learning, understanding, reasoning 
and interacting.” As a general-purpose technology, AI can take many forms such as a 
“technical infrastructure (i.e., algorithms), a part of the (production) process, or an end-
user product” (Szczepański 2019). Hence, in contrast with traditional technologies that 
automate routine processes, AI technologies even go further to mimic human activities 
that require cognition, and their application and use are not limited to the production 
process.

Meanwhile, the International Telecommunication Union (ITU) broadly defines AI as 
“self-learning, adaptive systems.” Accordingly, there are several “approaches” in defin-
ing AI, namely: (1) in terms of “technologies, techniques and/or approaches” such as 

14  Mueller (2006) distinguishes the types of R&D (private and university) from each other and estimated the impact of 
each separately. Also, the university-industry relation was measured by industry grants per researcher.
15  In the sample, Nakatani (2021) reveals an insignificant impact of intangible assets on TFP among South Korean firms, 
whereas a significant and positive contribution to TFP with the largest magnitude is found for ICT firms in the United 
Kingdom.
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“a neural network approach to machine translation”; (2) in terms of “purpose,” which 
include facial and image recognition; (3) in terms of “functions,” such as the “ability to 
understand language, recognize pictures, solve problems, and learn”; and (4) in terms of 
“agents or machines or algorithms” such as robots and self-driving cars (International 
Telecommunication Union 2023).

Furthermore, Montagnier and Ek (2021) cite several definitions of AI by individual 
countries and organizations such as the European Commission and the OECD. For 
instance, the OECD defines AI as a “machine-based system” that can “make predictions, 
recommendations, or decisions” and “operate with varying levels of autonomy” (Yeung 
2020). Additionally, the European commission (2021) provides some examples of AI, 
which include “chatbots” and “virtual assistants,” “face recognition systems,” “machine 
translation software,” “data analysis based on machine learning,” “autonomous robots,” 
and “autonomous drones.” On the other hand, national statistics institutions such as 
the French Institut national de la statistique et des études économiques (INSEE) (2019) 
describe AI as “technologies” that can perform “cognitive tasks traditionally performed 
by humans,” whereas Statistics Sweden (2020) notes that physically, AI may be “purely 
software based or embedded in hardware.”

Because of its broad definition and the lack of a single, universally accepted descriptor 
of AI, classifying existing AI technologies is also a difficult task. In spite of this, Sarker 
(2022) categorized AI into five types, which include analytical, functional, interactive, 
textual, and visual.16 However, the most commonly heard terms in AI are the “tech-
niques” used in developing intelligent and smart systems in various real-world applica-
tion areas.” Sarker (2022) identified at least ten “potential categories,” namely:

•	 Machine learning,
•	 Neural network and deep learning (including generative AI),
•	 Data mining, knowledge discovery, and advanced analytics,
•	 Rule-based modeling and decision-making,
•	 Fuzzy logic-based approach,
•	 Knowledge representation, uncertainty reasoning, and expert system modeling,
•	 Case-based reasoning,
•	 Text mining and natural language processing,
•	 Visual analytics, computer vision, and pattern recognition,
•	 Hybrid approach, searching, and optimization.

While each AI technique has its scope and specific applications, it is often that existing 
technologies are combinations and applications of various categories. Thus, grouping AI 
systems according to specific types or techniques is not always feasible. Moreover, AI 
development is a wide and ongoing practice, and more and newer forms of AI technolo-
gies are continuously produced over time. For example, ChatGPT, a form of generative 

16  Analytical AI refers to technologies that help in the identification of “new insights, patterns, and relationships or 
dependencies” in data for decision-making. Functional AI executes or implements actions, instead of generating recom-
mendations. Interactive AI enables “interactive communication” between the user and a smart system to provide user 
assistance (e.g., chatbots and smart personal assistants). Textual AI typically covers textual analytics and natural lan-
guage processing. Finally, visual AI can be considered a “branch of computer science” that “trains” machines to learn 
images and visual data (Sarker 2022).
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AI technology that employs deep learning, was released to the public in 2022, and 
quickly became a groundbreaking AI technology due to its ability to interact with indi-
viduals and provide “comprehensive and practical responses” (Marr 2023).17 ChatGPT is 
built upon “foundational large language models” (LLMs), which go beyond conventional 
natural language algorithms.

In addition, AI development may be unique to its industry due to the nature of AI 
itself. Coiera (2019) identifies three main stages of AI development, termed “miles.” The 
“first mile” consists of data acquisition, pre-processing, or “cleaning.” The “middle mile” 
includes “developing and testing the technical performance of different algorithms” that 
are built using the data acquired in the first stage. After all tests and tuning are com-
pleted, an AI system enters the last mile, where it is “embedded in real-world processes 
and tested for impact on real-world outcomes.”

However, each stage of AI development has its challenges. The first mile entails “foun-
dational challenges,” such as “gathering and curating” huge amounts of high-quality data. 
Acquiring large amounts of data presents a potential “bottleneck,” and “translates into a 
roadblock to technology application.” Meanwhile, the middle mile involves the difficul-
ties of “data-driven algorithm development,” such as “biases, replicability, causal infer-
ence, avoiding overfitting on training data, and enhancing the generalizability of any 
models and algorithms” (Coiera 2019).18

Finally, and likely the hardest task, occurs in the third mile. As it turns out, “AI does 
not do anything on its own”; therefore, AI systems must somehow “connect” to the real 
world. Simply, the impact of an AI system must be “consequential” and “meaningful.” For 
example, the current setting does not necessitate better diagnoses of cancer but “more 
nuanced” and “less aggressive” approaches to detection and management. Hence, the 
last mile refers to the implementation of AI itself in real-world processes. AI implemen-
tation faces a plethora of challenges, which can be classified under “measurement,” “gen-
eralization and calibration,” and “local context” (Coiera 2019).19

2.2 � AI and economic growth

AI drives economic growth by stimulating gains both from the supply side and the 
demand side. AI can drive business productivity through (1) automation of processes 
with the use of robots and “autonomous vehicles,” and (2) improvements in the existing 
labor force by equipping them with AI technologies. On the other hand, AI can generate 
an increase in consumer demand with the availability of “personalised and/or higher-
quality” products and services. Accordingly, it is expected that AI could contribute up to 
USD 15.7 trillion to the global economy in 2030 (Rao and Verweij 2017).

Furthermore, the contributions of AI may be specific to the sectors where it is applied, 
such as manufacturing, health, finance, energy, and transport. For example, AI supports 

17  The period considered in the analysis may not cover recent generative AI such as ChatGPT, unless these inventions 
have been patented years before their release.
18  Aside from these challenges, training AI models is typically associated with enormous costs, both in time and 
resources.
19  Challenges in measurement gauge how well an AI performs its assigned tasks. On the other hand, generalization and 
calibration refer to the performance and replicability of an AI system to different populations or datasets. Local context 
encompasses the “act of fitting” new technology and its “goodness of fit” into a pre-existing organizational network (Coi-
era 2019).
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healthcare services through early detection and diagnosis of illnesses, identification of 
“potential pandemics and tracking incidence,” and “imaging diagnostics” in radiology 
and pathology. Meanwhile, AI contributions to the financial sector include applications 
for fraud detection and anti-money laundering. Also, AI developments such as “robo-
advice” make “customized investment solutions” possible in managing financial goals 
and optimizing clients’ funds. In addition, AI enables “autonomous trucking and deliv-
ery,” traffic control systems, and improved security in the transport sector (Rao and Ver-
weij 2017).

Recently, Lu (2021) built a theoretical framework that traces the impact of AI on 
endogenous growth. Lu (2021) likens AI to human capital accumulation, “as it can learn 
and accumulate knowledge by itself.” Secondly, AI is a “nonrival input,” which can be 
used in production without having it “detract from its ability to accumulate AI.” This 
implies that AI is disembodied from physical capital, and should be considered a sep-
arate input.20 Moreover, Lu (2021) unveils a balanced growth path in the three-sector 
endogenous growth model, where production and factors including AI grow at the same 
rate.21

Using provincial data from China, He (2019) estimated the effect of AI on regional 
economic growth. Unlike most innovation studies on ICT and growth, He (2019) makes 
use of fixed assets investment in ICT to GDP as a measure of AI,22 rather than AI-spe-
cific patents or published articles. Similarly, Fan and Liu (2021) tested AI as a tool for the 
sustainable economic development of Chinese provinces.23 The results in both studies 
are consistent with theories on the growth-enhancing capability of AI.

Furthermore, Yang (2022) evaluated the effect of both AI and non-AI patents on 
firm-level productivity and employment in Taiwan. Both types of patents were found 
to improve productivity and employment among Taiwanese electronic firms. Estima-
tion results revealed that both AI and non-AI patents contribute to TFP, and the differ-
ence in elasticities between the two patent types is insignificant. Moreover, when TFP 
is replaced by labor productivity, the estimated coefficient for AI patents is lower than 
in the model with TFP as a dependent variable. Yang (2022) suggested that this can be 
attributed to AI technology having a “greater effect on capital productivity,” which is 
consistent with the frameworks of Arrow (1962) and Zeira (1998).

At present, there are limited empirical works regarding AI as an engine of economic 
growth, primarily because of the unavailability of data.24 Though extant literature on the 
topic finds a positive relationship between AI technology and economic growth, gen-
eral sentiment suggests the effect of AI on growth is complex (He 2019) and difficult to 

20  This is similar to the Bahk and Gort (1993) model. Lu (2021) further adds that AI may replace human labor in the 
future, which subsequently has welfare implications.
21  The balanced growth path by Lu (2021) shows output, human capital, physical capital, AI, and consumption grow at 
the same rate.
22  Specifically, He (2019) measures AI as “the ratio of fixed assets investment in information transmission computer 
services and software industry to GDP.”.
23  Fan and Liu (2021) have developed an index to measure AI level based on three aspects, namely “infrastructure devel-
opment, technology application, and market benefits.”.
24  On the other hand, Oxford Insights (2022) has developed an AI readiness index per country, available in the annual 
reports published since 2017. However, the current dataset lacks enough observation in terms of the time dimension. 
Thus, using the index was ruled out in favor of long-run analysis. Nonetheless, this study recommends using the index 
and/or other related AI measures for future research once more data are available.
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measure. Intuitively, this can be because of its multifaceted role as an input to produc-
tion. Still, with the increasing use of AI across countries and industries, this article seeks 
to measure the impact of AI on national growth rates amidst empirical constraints.

3 � Theoretical framework
This study follows an endogenous growth framework. An endogenous model of eco-
nomic growth often starts with the basic Cobb–Douglas function. However, this study 
also takes into account human capital as an input to production:

where Y  is the total output, K  stands for capital, L for labor, and H is human capital. 
The elasticities of output to capital, labor, and human capital are denoted by α , β , and γ , 
respectively. Meanwhile, A is the level of knowledge, or as proposed by Jones and Wil-
liams (1998), the stock of ideas, available in an economy.

To obtain the output per unit of labor, Eq. (1) is divided on both sides by L . Multiply-
ing the right-hand side with L

α+γ

Lα+γ =
Lα

Lα ·
Lγ

Lγ = 1 and assuming constant returns to scale, 
α + β + γ = 1 , results in Eq. (2):

For simplicity, the per unit of labor variables are replaced by small letters, as with 
Eq. (3):

The technology factor A is seen as the available knowledge stock at time t . Romer 
(1990) proposed that since knowledge is a nonrival input, all researchers can utilize 
existing knowledge stock at the same time. Summing across all individual efforts in 
research yields Eq. (4):

where R is the research effort or resources devoted to research. The function is assumed 
to be increasing in R , as more research leads to more ideas. Jones and Williams (1998), 
though, noted that Eq. (4) may be increasing or decreasing in A , depending on how pre-
vious ideas affect current research.

A basic (and crucial) assumption is that the parameter θ is assumed to be 1, to show 
that the increase in R results in an increase in new ideas.25 Meanwhile, the coefficient δ 
depicts the productivity of research, as proposed by Romer (1990) and Jones and Wil-
liams (1998).

To estimate Eq. (3), the equation is transformed into its natural log form. Further, the 
differenced natural logged form of Eq. (3) is obtained to calculate the growth rate:

(1)Y = AKαLβHγ
,

(2)
Y

L
= A

(

Kα

Lα

)(

Hγ

Lγ

)

= A

(

K

L

)α(H

L

)γ

.

(3)y = Akαhγ .

(4)Ȧ = δRθA,

25  Jones and Williams (1998) explored the idea of a non-constant return to R and A . They introduce additional param-
eters that represent “congestion externality,” “knowledge spillovers,” and “fishing out effects” in research, allowing the 
parameter θ to fall between 0 and 1 and assume non-linearity in A.
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The growth rate of y is defined as gy = ẏ
y , where ẏ = dy

dt
 . The term ẏ represents the dif-

ference, or change, in output per worker between two time periods (the change in t ). 
Mathematically, the growth rate can be further expressed as 
gy =

dy/dt
y =

dlny
dt

=
lnyt−lnyt−s

s  . Therefore, dividing Eq.  (5) by the change in t yields the 
growth rate equation:26

Substituting Eq. (4) for the value of Ȧ in Eq. (6) and simplifying the resulting equation 
yields:

Finally, the growth rate of y can be written as:

This study focuses on determining the relationship between AI innovation and eco-
nomic growth. Thus, the variable R is proxied by the level of AI innovation in the econ-
omy, given by the amount of AI patents published within a certain period. Notably, this 
is slightly different from the theoretical specification, which indicates R as inputs or 
resources devoted to research (e.g., R&D expenditure, share of labor assigned to R&D, 
etc.). In general, patents are precisely the output of these R&D efforts. The choice of 
R&D input, such as the number of researchers, or output, such as the number of pat-
ents, in economic analysis, has been discussed by Griliches (1998). Ultimately, this deci-
sion depends on the size of the error terms in the relationships among patents, research, 
and knowledge stock.27 Moreover, Griliches (1998) conjectures that if the “stochastic 
component” of knowledge stock is captured to some extent by patenting, using patents 
may have some “value added” over the use of common research inputs as an indicator of 
knowledge.

Patents embody the quantity, type, inventiveness, and complexity of innovation cre-
ated in a given time (Griliches 1998). Although not without disadvantages, patents 
can serve as a good indicator of technical knowledge. More importantly, patent data 
are more readily available for analysis than research input measures, especially for AI. 
Hence, this study makes use of the number of AI and total patents as a proxy for R&D.

Furthermore, while the model discussed in this section explains how traditional 
research translates to economic growth, the current model might not fully encapsulate 

(5)�lny = �lnA+ α�lnk + γ�lnh.

(6)
ẏ

y
=

Ȧ

A
+ α

k̇

k
+ γ

ḣ

h
.

(7)
ẏ

y
=

δRθA

A
+ α

k̇

k
+ γ

ḣ

h
.

(8)gy = δR+ αgk + γ gh.

26  Equation  (6) is the (short-run) growth equation when dt = 1 . For long-run growth rates, the change in t  is greater 
than 1 (dt > 1) to indicate longer periods.
27  Griliches (1998), however, acknowledges the difficulty of measuring these relationships, as knowledge stock is unob-
servable.
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the effect of AI.28 As stated previously, the employed model assumes constant returns 
to research (and by extension, AI). However, because of the nonrivalry of data and the 
possibility of AI “outpacing” human intelligence, continuous AI invention may exhibit 
increasing returns, further leading to a “technological singularity,” or explosion of growth 
rates (Aghion et al. 2018). Exploring empirical evidence of such a mechanism is beyond 
the scope of this study; however, it is a highly recommended topic for future research.29

4 � Data and methodology
For this study, the primary challenge to perform econometric analysis is obtaining data 
that can measure the level of AI in a cross-country, panel dataset format. As discussed in 
the previous sections, the most common indicator of technological innovation is patent 
publications. Therefore, this study uses AI patents as a measure of AI.

Data for AI patents are available from the Google Patents Public Data, provided by the 
Information for Industry, Inc. (IFI) CLAIMS Patent Services. To identify AI patents, a 
text search query was performed in the patents database. The text search includes com-
mon words or phrases related to AI, such as “artificial intelligence,” “face recognition,” 
“virtual assistant,” “machine learning,” etc.30 Meanwhile, data for the dependent and con-
trol variables are sourced from the United Nations (UN) Department of Economic and 
Social Affairs Statistics Division and the World Bank.

This study echoes the econometric models of Wong et al. (2005), Kim and Lee (2015), 
and He (2019) among others. Estimating Eq. (8) from the previous section, the econo-
metric model follows the equation:

where Growthit is the annual average real GDP per capita growth rate of country i over 
a certain period t , i.e., five years, calculated by dividing the difference between the natu-
ral log value of end-of-period real GDP per capita (in USD and constant 2015 prices) 
and the natural log value of initial real GDP, by the number of years in period t . Hence, 
Growthit is the instantaneous growth rate of the real GDP of country i in period t.

The lagged variable of growth rate is added to control for any potential endogeneity 
brought by the omitted variable, in the case when a large influence on current growth by 
its lagged value is present. Likewise, the lagged value of real GDP per capita is included 
to test for the convergence effect between high-income and low-income countries. The 

(9)Growthit = ϕ0 + ϕ1Growthi,t−1 + ϕ2GDPpci,t−1 + ϕ3Patentsit + ϕXit + εit ,

28  Lu and Zhou (2021) note that the definition of AI in theoretical models can be “very broad,” whereas empirical data 
tend to have “narrow” definitions, resulting in a gap between the two. Theoretical models typically depict AI as a type of 
automation, but continuous AI development may be capable of replacing even high-skilled labor. In addition, AI raises 
the question of what a “human being” is in economics, where the human being is often “narrowed down” to “labor” and 
an “optimization agent.” Aside from the current lack of clarity of whether AI is a “new production technology” or simply 
a new input of production, the question of which input (e.g., labor, human capital, or an “independent decision-making 
agent”) is AI used as a substitute for also persists.
29  In addition, Brynjolfsson et al. (2018) highlighted the “modern productivity paradox” in the age of AI. AI is indeed 
capable of many promising feats; however, productivity growth remained stagnant over the past decade. They attributed 
this inconsistency to several reasons, such as the difficulty of measuring AI capital because of its mostly intangible out-
puts, and the amount of time and resources required for the impact of technology to be fully reflected in productivity.
30  Because of the mode of data extraction, the AI patent variable may be prone to accuracy and measurement error. As 
much as possible, the list of common AI terms used in the text search has been exhaustive. Furthermore, some technical 
jargon may be shared among multiple branches of knowledge that include AI. Hence, the word list has been limited to 
the most common and specific AI terms. An exact search of the identified terms and/or phrases was then performed.
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lagged real GDP per capita refers to the 5-year average of real GDP per capita in the 
period t − 1.

The variable Patentsit stands for the level of AI innovation per country, measured by 
the total number of AI-related patents per million people in a 5-year average population 
within period t . This measure is the same intensity index used by Kim and Lee (2015) 
and was also converted into natural logarithms.31 AI patents are then replaced by the 
total number of patents to determine the relationship between total technological inno-
vation and economic growth (see Table 3). The expected sign of both patent variables is 
positive.
Xit represents a set of control variables that include population growth, real gross capi-

tal formation growth rate per capita, real government expenditure growth rate per cap-
ita, trade openness, and inflation.32 All control variables are 5-year average growth rates 
except for trade openness, which is the 5-year average ratio of trade volume (exports 
plus imports) to GDP.33 The control variables appear in similar literature, such as in the 
seminal works of Grier and Tullock (1989) and Barro (1997), and in the more recent 
studies of Bassanini et al. (2001), Ulku (2004), Kim et al. (2012), and Fan and Liu (2021).

In addition to the control variables, an index using data for years of schooling and 
returns to education, obtained from the Penn World Table (PWT) by Feenstra et  al. 
(2015), is taken as a proxy for human capital.34 The index makes use of average years 
of schooling, while also considering decreasing returns to education. Despite this, the 
index, like other usual human capital measures, ignores cognitive skills, which may be 
more important in capturing the real effect of human capital (Feenstra et al. 2013). This 
measure also enters the model as a 5-year average growth rate.

Specific time period effects and advanced economic status are indicated using dummy 
variables. There are ten t periods in total consisting of five years each, spanning from 
1970 to 2019. Advanced economies are countries with more than USD 10,000 of the 
5-year average real GDP per capita. Finally, to control for any interaction effect between 
the level of economic development and patent creation, an interaction term between 
advanced economic status and patent variables was introduced. The expected sign of 
the interaction term is negative, implying a lower impact of patent creation on long-run 
growth among advanced economies.

Statistical treatment was initially done using ordinary least squares (OLS) and fixed 
effects in panel data. However, because of the inclusion of the lagged growth rate, the 
model is prone to the Nickell bias, which is unaccounted for in the fixed effects estima-
tion of dynamic panels (Nickell 1981; Roodman 2009). In addition, bias due to reverse 
causality between growth rate and patents might be present in the model. Hence, the 

31  Several studies make use of R&D “intensity” as a measure of innovation (e.g. Jones and Williams 1998; Blind et  al. 
2006; Yanhui et al. 2015). Other examples of R&D intensity measures include patent applications per R&D expenditure, 
R&D over sales for firm-level data, number of researchers per million people, etc.
32  Because of data availability, this study makes use of the implicit price deflator (rather than the consumer price index) 
to calculate inflation.
33  Except for trade, all variables in Xit are also expressed as instantaneous growth rates.
34  This comes from Wößmann (2003), who argues that common proxies for human capital such as school enrollment 
rates and average years of schooling either insufficiently or incorrectly model the “development effect” of human capital. 
Specifically, Wößmann (2003) explains that enrollment ratios are flow variables, and enrolled students are not yet part of 
the labor force, and thus are excluded from economic production. On the other hand, average years of schooling “mis-
specifies” human capital by placing the “same weight on any year of schooling” of a person, and does not input the “qual-
ity of education system.”.
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Anderson-Hsiao (AH) and generalized method of moments (GMM) estimation tech-
niques are employed to minimize endogeneity issues (Arellano and Bond 1991; Arellano 
and Bover 1995; Blundell and Bond 1998).35

The next section presents the results of the panel data regressions.

5 � Results and discussion
Table 1 presents the descriptive statistics of the panel data, consisting of ten periods with 
5-year intervals between 1970 and 2019. Because of data availability issues, the dataset 
used is an unbalanced panel data, as indicated by the unequal number of observations 
(N) and number of groups (n) across variables.

Five-year growth rates averaged around 1.30%, with a standard deviation of 3.55 across 
countries in the dataset.36 Intuitively, high-income countries will typically have lower 
growth rates because of the convergence effect. To control for this effect, the estimations 
presented later include the 5-year average real GDP per capita variable from the previ-
ous period. The mean 5-year real GDP per capita is USD 11,990.25.

Table 2 summarizes the economic performance measures such as real GDP per capita 
and real GDP per capita growth rates, and technological progress in terms of AI and 
total patents per level of economic development. This follows the classification of Kim 
and Lee (2015), where countries with real GDP per capita above USD 10,000 are consid-
ered to be in an advanced development stage. Countries with real GDP per capita below 
the threshold are classified as less developed.

As expected, high-income countries post higher technology output, in terms of pat-
ents per million people, between the two income groups. With 165 countries in the data-
set, less developed economies are the larger group of the two, and with slightly higher 
average real GDP per capita growth (1.39%). Illustratively, patent output and income per 
capita across countries are displayed in Fig. 1.

Figure  1 depicts the patent publications and level of income per capita. In terms of 
patents, advanced economies such as Japan, the United States, Germany, South Korea, 
France, and China have had the highest output between 1970 and 2019. Overall, China 
has had the highest cumulative AI and total patents within the period, with 849,752 AI 
and 32,317,932 total patents. This is followed by Japan (365,409 AI and 18,965,778 total 
patents), and the United States (259,844 AI and 12,883,662 total patents), respectively.

Regardless, all countries started with low levels of AI and total patents in the early 
1970s, as illustrated in Fig.  2. While global AI and total patent counts have steadily 
increased since the 1970s, China has had a dramatic increase in the number of patents 
from 2000 onwards. This dwarfs the patent output of other advanced economies (see 
top panel of Fig. 2). The explosion of Chinese patents can be attributed to the growth of 
R&D expenditure, FDI, and patent subsidies in the country (Chen and Zhang, 2019).37

35  The full list of variables is available in Table  12 in the appendix. Additional variables are considered (e.g., Internet 
users, non-patent literature) as part of the robustness checks. See Sect. 5.1 under Sect. 5.
36  The presence of positive and negative outliers contributed to a relatively high standard deviation. Calculated five-year 
real GDP per capita growth rates range between − 24.52% and 23.59% in the dataset, across countries and periods.
37  The driving forces, however, have had specific and varying effects per type of patent filing. Chen and Zhang (2019) 
note that R&D spending generally boosts Chinese patent creation, while FDI is only robust for utility and design patents. 
Patent subsidies, on the other hand, have a positive effect on design patents.
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Meanwhile, the East Asian economies of Japan and South Korea, have led in terms of 
patent “intensity,” defined as the number of patents per million people (see bottom panel 
of Fig.  2). Japanese AI and total patents per million people have demonstrated sharp 
increases since the 1970s but generally declined by the mid-2000s.38 On the other hand, 
South Korea has also witnessed substantial growth in both AI and total patents per mil-
lion people since the early 1990s. This trend has continued in the subsequent periods, 
with South Korea eventually overtaking Japan by the early 2010s.

The main estimation results are presented in Table  3. The estimation techniques 
used are panel OLS, fixed effects, AH, and GMM. Both models with AI patents and 

Table 1  Summary statistics

All variables are 5-year averages except for patent variables, which are the total number of patents over the 5-year period 
divided by the 5-year average of population, and then multiplied by 1 million. Values appearing in the table are based on 
the author’s calculation using the datasets available from the Google Patents Public Data, the Penn World Table, the World 
Bank Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Variable (1) (2) (3) (4)
N n Mean Std. Dev

Real GDP per capita (USD) 2080 208 11,990.25 20,181.72

Real GDP per capita growth rate (%) 1936 208 1.30 3.55

AI patents per million people 2165 217 98.14 475.69

Total patents per million people 2165 217 9532.16 31,989.98

Population 2170 217 25,300,000 105,000,000

Population growth rate (%) 2163 217 1.35 1.32

Gross capital formation per capita 1927 207 2809.10 4658.01

Gross capital formation per capita growth rate (%) 1924 207 1.41 8.10

Government expenditure per capita 1925 207 2308.52 3692.08

Government expenditure per capita growth rate (%) 1923 207 1.45 5.07

Human capital index 1387 145 2.19 0.73

Human capital index growth rate (%) 1386 145 0.77 0.58

Trade ratio to GDP (%) 1839 196 76.45 58.56

Inflation (%) 1928 207 2.86 5.34

Table 2  Average economic and technology output across income classification

Values appearing in the table are based on the author’s calculation using the datasets available from the Google Patents 
Public Data, the Penn World Table, the World Bank Development Indicators, and the United Nations National Accounts—
Analysis of Main Aggregates

Variable (1)
Advanced economies

(2)
Less 
advanced 
economies

Real GDP per capita (USD), 5-year average 34,371.61 2637.98

Real GDP per capita growth rate (%), 5-year average 1.10 1.39

AI patents per million people 290.95 6.21

Total patents per million people 27,876.77 785.32

N 703 1467

n 91 165

38  The gradual decrease in domestic patenting was due to Japanese firms being selective in their patent registrations, 
focusing more on the quality than the number of filings (Japan Patent Office 2015).
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total patents were estimated; columns 1–4 estimate models with the log of AI patents 
per million people, while columns 5–8 test for the effect of the log of total patents per 
million people on the dependent variable, denoted by the 5-year average real GDP 
growth rate. Separate interaction terms between advanced economic status and the 
patent variables are also included.

As mentioned earlier, the lagged dependent variable in a dynamic panel regres-
sion is susceptible to the Nickell bias. Hence, both the AH and GMM estimations are 
employed to minimize this issue. While the lagged growth rate is positive in all mod-
els, it is only statistically significant in the AH estimation among the AI patents mod-
els (columns 1–4) and insignificant among the total patents models (columns 5–8). 
The lack of significance and small magnitude of the coefficients indicate the minimal 
impact of the first-order lagged growth rate on the contemporaneous growth rate.

Fig. 1  AI patents (left), total patents (right), and average real GDP per capita, 1970–2019

stnetaplatoTstnetapIA

elpoepnoillimrepstnetaplatoTelpoepnoillimrepstnetapIA

Fig. 2  AI patents (left) and total patents (right) of selected countries by period, 1970–2019
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Lagged real GDP per capita is statistically significant and negative in all models except 
in column 8, where it is negative but not significant. The results suggest a strong conver-
gence effect as observed in extant literature. Similarly, population growth has a negative 
and significant effect on per capita growth in columns 1, 2, 3, and 5, but is insignificant 
in other estimations. The negative sign of population growth in some estimates is in line 
with growth theories, but the actual overall effect of population growth across countries 
is unclear. Kelley and Schmidt (1995) attribute this mixed result between population 
growth and economic growth in the long run to the “offsetting” mechanism of “inter-
temporal demographic effects.” Accordingly, population growth rates are characterized 
by strong autocorrelation; thus, cross-sectional evidence that uses contemporaneous 
indicators of population inevitably captures “both the negative impacts of current births 
and positive impacts of past births.”39

Meanwhile, both gross capital formation and government expenditure growth rates 
manifest significantly positive effects in all models, implying that investments in physi-
cal capital and public infrastructure positively contribute to economic growth. Likewise, 
trade openness is statistically significant and positive in most equations, which is con-
sistent with the existing growth literature. Inflation and human capital, however, are not 
significant in all models. The lack of significance of human capital can be attributed to 
(1) the limitations of the measure, and (2) the substitution of labor and/or human capital 
with AI as an input to production, as raised by Zeira (1998) and Lu (2021) among others.

The variables of interest, the extent of AI and total innovation, are taken as the log 
number of AI patents per million people. As depicted in Table 3, AI patents have a sig-
nificant and positive impact on economic growth in all models. This is consistent with 
the findings of other studies by Lu (2021) and Yang (2022). On the other hand, total pat-
ents also significantly and positively affect economic growth; however, the magnitude 
of the effect is lower than AI patents. This is somewhat consistent with the findings of 
Nguyen and Doytch (2022), wherein total patents do not display a significant impact on 
the long-run growth rate. In addition, Nguyen and Doytch (2022) conclude that ICT pat-
ents have a more significant impact on economic growth than other kinds of patents.40

To address potential endogeneity either by omitted variables or reverse causality, the 
patent variables are instrumented in GMM estimations (columns 4 and 8).41 Estimated 
coefficients of AI innovation seem to be consistent and significant at least at the 10% 
level. On the other hand, total innovation is significant at least at the 10% level in OLS, 
fixed effects, and AH, but insignificant in GMM.

Moreover, the level of economic development (advanced economy) variable is insig-
nificant in all estimated models except in column 6. Meanwhile, the interaction term 

39  Kelley and Schmidt (1995), however, note that this does not imply that demographic effects on per capita growth are 
unimportant. Empirical results only highlight the need to study the long-run dynamics between population growth and 
output growth more carefully.
40  Aside from the technology “intensity index” given by the log number of patents per million people, the log number of 
patents was also used directly in the estimations. Results of these estimations reveal similar results (positive and signifi-
cant coefficient for AI patents, and weak significance for total patents).
41  The period (1970–2019) considered for estimation covers several socio-economic, political, and technological events 
(e.g., military conflicts, oil shocks, financial crises, Internet diffusion, etc.) that may have affected inter-country growth 
rates. All estimated models include time dummies; however, they may not fully capture the influence of external events 
on long-run growth rates. As part of the robustness checks, the average five-year growth rate of Internet users per coun-
try, for example, was included as a control variable. Results are available in Table 10 in the appendix.
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Table 3  Main estimation results

Dependent 
variable: 
real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Real GDP 
growth rate 
per capita 
(t − 1)

0.037 
(0.037)

0.024 
(0.028)

0.063** 
(0.028)

0.034 
(0.057)

0.025 
(0.047)

− 0.069 
(0.048)

− 0.025 
(0.027)

− 0.054 
(0.061)

Log of real 
GDP per 
capita ( t − 1)

− 0.437** 
(0.202)

− 1.865*** 
(0.455)

− 1.672*** 
(0.450)

− 1.593*** 
(0.570)

− 0.414*** 
(0.103)

− 2.284*** 
(0.422)

− 2.042*** 
(0.391)

− 0.602 
(0.904)

Log of AI 
patents 
per million 
people

0.178*** 
(0.067)

0.264*** 
(0.078)

0.246*** 
(0.089)

0.275* 
(0.152)

– – – –

Log of total 
patents 
per million 
people

– – – – 0.172*** 
(0.048)

0.131* 
(0.071)

0.124* 
(0.069)

0.197 
(0.177)

Population 
growth rate

− 0.462*** 
(0.154)

− 0.371* 
(0.210)

− 0.391*** 
(0.107)

0.085 
(0.361)

− 0.206* 
(0.120)

0.043 
(0.232)

0.034 
(0.115)

− 0.724 
(0.532)

Gross capital 
formation 
growth rate 
(per capita)

0.164*** 
(0.043)

0.162*** 
(0.045)

0.166*** 
(0.011)

0.149*** 
(0.047)

0.173*** 
(0.023)

0.145*** 
(0.022)

0.148*** 
(0.012)

0.224*** 
(0.062)

Government 
expenditure 
growth rate 
(per capita)

0.268*** 
(0.048)

0.262*** 
(0.049)

0.259*** 
(0.026)

0.335** 
(0.169)

0.244*** 
(0.041)

0.210*** 
(0.043)

0.209*** 
(0.021)

0.538*** 
(0.165)

Trade open-
ness (5-year 
average)

0.004** 
(0.002)

0.004** 
(0.002)

0.004* 
(0.002)

0.009*** 
(0.003)

0.004*** 
(0.001)

0.006** 
(0.003)

0.005* 
(0.003)

0.006 
(0.009)

Human 
capital index 
growth rate

− 0.045 
(0.150)

0.005 
(0.146)

0.008 
(0.162)

− 0.028 
(0.269)

0.028 
(0.138)

0.004 
(0.138)

0.000 
(0.223)

0.992 
(0.674)

Inflation 
(5-year aver-
age)

− 0.001 
(0.023)

− 0.007 
(0.023)

− 0.013 
(0.019)

− 0.039 
(0.031)

0.010 
(0.019)

0.012 
(0.018)

0.007 
(0.020)

0.038 
(0.138)

Advanced 
economy 
(dummy)

− 0.196 
(0.334)

0.223 
(0.326)

0.125 
(0.461)

0.505 
(0.519)

− 0.457 
(0.619)

1.421* 
(0.771)

1.177 
(1.120)

− 0.146 
(3.005)

Advanced 
x Log of 
AI patents 
per million 
people

− 0.032 
(0.061)

− 0.096 
(0.081)

− 0.082 
(0.094)

− 0.227* 
(0.129)

– – – –

Advanced x 
Log of total 
patents 
per million 
people

– – – – 0.026 
(0.069)

− 0.196** 
(0.098)

− 0.170 
(0.129)

0.020 
(0.358)

Constant 4.224*** 
(1.636)

17.210*** 
(4.324)

– 14.172** 
(5.487)

3.238*** 
(0.820)

19.710*** 
(3.786)

– 4.106 
(8.366)

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – – 65 – – – 32
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between the level of economic status and patent creation is negative and significant in 
columns 4 and 6. The negative sign implies that AI and overall innovation exhibit less 
impact on economic growth among advanced economies, which is similar to the conver-
gence effect stated previously.

Furthermore, the Sargan-Hansen test provides the test for overidentifying restrictions 
for the GMM model. The p-values of the Sargan-Hansen statistic of the GMM models 
for AI and total patents are 0.426 and 0.581, respectively. Thus, the null hypothesis that 
the instruments are valid is not rejected.42 Also, the Arellano-Bond AR(1) and AR(2) 
tests for GMM are presented for reference. The p-values of the AR tests indicate the 
presence of serial correlation only at the first differences.43

Results indicate that AI-related innovation drives long-run economic growth. The 
wide applicability of AI across industries can be one reason for its positive contribution. 
AI systems can be implemented in manufacturing, ICT, transportation, finance, and 
medical services among other industries (Mou 2019). Self-learning and monitoring ben-
efit the manufacturing sector by increasing precision and efficient utilization of physical 
capital, reducing defects and delays (Rao and Verweij 2017). More recent and practical 
forms of AI such as voice-to-text applications and speech recognition allow businesses 

Robust (OLS, FE, GMM) and bootstrapped (AH) standard errors are enclosed in parentheses. AH estimation does not report 
a constant term. Values appearing in the table are based on the author’s calculation using the datasets available from the 
Google Patents Public Data, the Penn World Table, the World Bank Development Indicators, and the United Nations National 
Accounts—Analysis of Main Aggregates
*** Significant at 1% level

**Significant at 5% level

*Significant at 10% level

Table 3  (continued)

Dependent 
variable: 
real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Sargan-
Hansen test 
(p-value)

– – – 0.426 – – – 0.581

AR(1) 
(p-value)

– – – 0.001 – – – 0.000

AR(2) 
(p-value)

– – – 0.661 – – – 0.257

N 616 616 616 616 1140 1140 1140 1140

n 122 122 122 122 144 144 144 144

42  The reliability of the Sargan-Hansen statistic, however, weakens as the number of instruments increases. Thus, the 
number of instruments was reduced to avoid this issue as much as possible. Roodman (2009) recommends that the 
total number of instruments should be less than the total number of individual units in a panel dataset. To reduce the 
number of instruments, the optimal number of lags is chosen per GMM estimation. A maximum of five lags is used, 
but the model should simultaneously satisfy the Sargan-Hansen and AR(2) tests, while also considering the explanatory 
power of the variable(s) of interest and control variables. Following these specifications, the AI patents model passes the 
Sargan-Hansen and AR(2) tests until the fifth-order lagged instruments, while the total patents model only passes both 
tests at the second lag; hence, the difference in the number of instruments (column 4 with 65 and column 8 with 32).
43  Unit root tests (Fisher-type based on augmented Dickey-Fuller) for unbalanced panel data were also performed to 
check for random walk. The tests revealed that the variables contain at least one stationary panel (the null hypothesis 
that all n panels contain unit roots is rejected). However, the test could not be performed for the log of AI patents per 
million people due to missing observations.
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to reach and respond to customers in real time (Mou 2019), inducing an increase in the 
volume of consumer transactions. AI technologies can be implemented in financial sys-
tems to detect fraudulent activities, preventing theft and loss (Bose 2006; Akhilomen 
2013). Furthermore, predictive modeling with AI can analyze and manage traffic flow 
(Mou 2019; Yigitcanlar et al. 2020), which is notoriously known to cause negative exter-
nalities, more effectively.

5.1 � Robustness checks

For additional robustness checks, periodic estimations in the dataset are also per-
formed. The dataset is divided into two periods, 1970–1994 and 1995–2019, consist-
ing of 25 years each. Due to limited AI and non-AI patent data, the 1970–1994 period 
has fewer observations. Additionally, most countries that published and applied for AI-
related patents within this period are advanced economies, as shown in the number of 
groups (n) and the lack of an estimated coefficient for the “advanced” dummy in columns 
2 and 3 in Table 4.44 Therefore, a comparison of impacts on long-run growth brought by 
technological innovation, specifically those on AI, between advanced and less advanced 
economies might not be intuitively useful for observations within this time frame.

Table 4 displays the estimation results of the models for both AI and total patents for 
the 1970–1994 period, whereas Table 5 provides the results of estimations for the period 
1995–2019. As indicated in Table 4, the effect of AI on growth is not statistically signifi-
cant for the period 1970–1994, which can be due to (1) the limited number of observa-
tions, (2) the lesser number of AI patents, and (3) the relatively less technically advanced 
nature of AI innovation during this period. Interestingly, the effect of total patents is 
significant and positive during the same period, as shown in columns 5–8. Hence, the 
results suggest that other types of patents compared to early AI technologies might have 
had a more substantial effect on growth rates before 1995.

On the other hand, the estimated fixed effects, AH, and GMM coefficients are signifi-
cant for AI patents in the 1995–2019 period in columns 2–4 in Table 5. The significance 
of the estimates provides evidence of AI being a driver of long-run economic growth for 
the latter half of the time frame in the dataset. More surprisingly, the value of the coef-
ficient of AI patents in the GMM model is relatively large compared to estimated param-
eters in other models. Meanwhile, the total patents variable is insignificant for long-run 
growth rate in all models, except in OLS in column 5. In addition, the interaction terms 
between patent creation and economic status are mostly insignificant in both periods. 
Hence, there is no clear distinction on the effect of patent creation between developed 
and less developed economies on long-run growth in both periods.45

An obvious implication of the above results is that the effect of AI has become increas-
ingly evident toward the latter years of the dataset, while innovations from other disci-
plines have extended relatively less impact on growth.46 Notably, AI patent registration 

44  The “advanced” dummy variable was dropped due to collinearity.
45  A short-run analysis was also conducted to check for the short-run impacts of technical innovation on economic 
growth. Instead of a five-year average growth rate, the yearly real GDP growth rate per capita growth rate was used as 
the dependent variable. Likewise, annual levels and growth rates of the patent and control variables were used in the 
regressions. The results are available in Table 9 in the appendix.
46  Distinguishing the effect of AI from non-AI patents on growth might be a challenging task when using patents as an 
indicator of technological innovation. As AI becomes increasingly and deeply embedded in production tools and pro-
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had started picking up by the mid-1990s, especially among advanced economies (see 
Fig. 2), which naturally contributed to a heightened impact of AI in the second half of 
the entire period. Arguably, the quality of AI technologies within this period has also 
improved compared to earlier forms of AI prior to the last two to three decades.

Furthermore, separate estimations between advanced and less advanced econo-
mies were also done, both for AI and total patents. As defined in the previous section, 
advanced countries are those with more than USD 10,000 of the 5-year average real GDP 
per capita. The results can be found in both Tables 6 and 7.

The effect of AI is strongly and positively significant among advanced economies in col-
umns 1–4 in Table 6, but does not entail any implication on long-run growth among less 
advanced or emerging economies in Table 7.47 This suggests that viable infrastructures and 
institutions, which may only be available in developed countries, are necessary to leverage 
AI in the economy. This, in turn, translates into positive contributions to economic growth. 
More importantly, this finding resembles the theory proposed by Zeira (1998), which 
explains the differences in the type and level of technologies available across countries.

Meanwhile, total patents engender a quite similar effect on growth between advanced 
and less advanced economies. Coefficients of the patent variable are positive and signifi-
cant in OLS, but negligible in fixed effects, AH, and GMM, which is true for both groups 
of countries. This indicates that total patents do not contribute to long-run economic 
growth regardless of a country’s level of development. Thus, more specific, technical, 
and practical innovations, such as those of AI or ICT in nature, are more important than 
other types of innovations in terms of their effect on economic growth.

Finally, the possibility of an external instrument is not precluded and has been 
explored to further address endogeneity. As mentioned earlier, the estimated model is 
susceptible to bias, either due to omitted variables or bi-directional causality between 
patent creation and economic growth. Hence, aside from fixed effects and GMM, fixed 
effects estimation with instrumental variable (FE-IV) is also considered as a means of 
obtaining unbiased estimates.

The number of non-patent literature (NPL) cited by the patents is used as an instru-
ment for both AI and total patents. NPL refers to the cited articles of a patent docu-
ment that are not patents themselves (e.g., scientific publications, books, online sources, 
conference proceedings, etc.) to “justify” an invention’s “novelty.” Furthermore, NPL 
citations help gauge “the impact of scientific production cited in patents,” or conversely, 
“the technological impact of scientific publications” (Velayos-Ortega and Lopez-Carreño 
2021).

Non-patent references contribute to patent creation by providing justification and a 
scientific foundation for the technology being patented. Hence, a rich amount of non-
patent knowledge should positively contribute to patent creation. Scientific knowledge 

47  Because of the limited number of countries, the number of instruments (42) used in the GMM estimation among 
advanced economies for AI patents is relatively close to the number of individual panels n (53). While the number of 
instruments is still lower than the number of individual groups, it is more desirable to have the number of instruments 
as few as possible.

Footnote 46 (continued)

cesses, any new invention might have some AI component in it. Hence, disembodying AI from the “non-AI” component 
of an invention, for example, to estimate AI’s true effect on growth might present a challenge for future research.
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Table 4  Period estimations results, 1970–1994

Dependent 
Variable: 
real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Real GDP 
growth rate 
per capita 
(t − 1)

0.159** 
(0.066)

0.122 
(0.077)

0.223** 
(0.089)

− 0.156 
(0.174)

0.055 
(0.061)

− 
0.189*** 
(0.067)

− 0.074* 
(0.042)

− 0.125 
(0.118)

Log of real 
GDP per 
capita (t − 1)

− 0.291 
(0.206)

− 0.535 
(0.855)

− 0.377 
(1.145)

− 1.333 
(1.240)

− 0.352** 
(0.162)

− 
4.796*** 
(1.096)

− 
4.608*** 
(0.935)

− 4.141** 
(1.850)

Log of AI 
patents 
per million 
people

0.113 
(0.118)

0.151 
(0.130)

0.142 
(0.156)

− 0.186 
(0.252)

– – – –

Log of total 
patents 
per million 
people

– – – – 0.140** 
(0.066)

0.274* 
(0.155)

0.254** 
(0.129)

0.741*** 
(0.269)

Population 
growth rate

0.036 
(0.190)

0.135 
(0.310)

0.084 
(0.283)

0.230 
(0.991)

− 0.194 
(0.266)

0.565 
(0.504)

0.494 
(0.337)

0.713 
(0.762)

Gross capital 
formation 
growth rate 
(per capita)

0.228*** 
(0.023)

0.223*** 
(0.025)

0.237*** 
(0.019)

0.155*** 
(0.042)

0.185*** 
(0.029)

0.113*** 
(0.028)

0.120*** 
(0.018)

0.074 
(0.104)

Government 
expenditure 
growth rate 
(per capita)

0.172*** 
(0.054)

0.146** 
(0.061)

0.156*** 
(0.055)

0.123 
(0.150)

0.239*** 
(0.060)

0.189*** 
(0.067)

0.189*** 
(0.031)

0.069 
(0.085)

Trade open-
ness (5-year 
average)

0.004 
(0.004)

− 0.002 
(0.002)

− 0.002 
(0.004)

0.002 
(0.007)

0.005** 
(0.002)

0.005 
(0.007)

0.005 
(0.007)

− 0.007 
(0.011)

Human 
capital index 
growth rate

0.301 
(0.240)

− 0.142 
(0.222)

− 0.162 
(0.371)

0.325 
(0.770)

0.238 
(0.216)

− 0.152 
(0.303)

− 0.199 
(0.293)

− 0.049 
(0.679)

Inflation 
(5-year aver-
age)

− 
0.065*** 
(0.017)

− 
0.057*** 
(0.019)

− 
0.069*** 
(0.020)

− 0.036 
(0.038)

− 0.005 
(0.026)

0.023 
(0.029)

0.017 
(0.026)

0.075 
(0.084)

Advanced 
economy 
(dummy)

0.318 
(0.530)

– – 7.091** 
(2.849)

− 1.14 
(0.786)

− 1.157 
(1.086)

− 1.667 
(1.594)

− 3.105 
(3.211)

Advanced 
x Log of 
AI patents 
per million 
people

− 0.007 
(0.122)

0.059 
(0.122)

0.037 
(0.146)

0.392 
(0.286)

– – – –

Advanced x 
Log of total 
patents 
per million 
people

– – – – 0.151* 
(0.091)

0.223 
(0.187)

0.278 
(0.254)

0.353 
(0.466)

Constant 2.353 
(1.666)

5.018 
(8.030)

– 7.991 
(10.972)

1.900 
(1.428)

37.680*** 
(9.198)

– 30.000* 
(15.420)

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – – 31 – – – 33
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itself is vast and varied; however, only the cited literature in the patents themselves is 
specific and relevant to the inventions.

As expected, the direct effect of scientific publications, as a measure of scientific 
knowledge, on economic growth has been well-studied in the literature (e.g., Kim and 
Lee 2015; Solarin and Yen 2016; Maradana et al. 2017; Pinto and Teixeira 2020). While 
the non-significance of academic research on economic growth has been found in some 
studies, general sentiment and results still regard academic publications as a direct and 
positive contributor to growth. This notion casts some doubt on whether scientific lit-
erature can serve as a valid instrument for patent creation.

This study, however, suggests that for research output to be translated into an object of 
economic value, it has to be transformed first into an input (or intermediate good), to be 
used later in the production of other goods.48 The knowledge contained in relevant and 
cited NPL, for example, is used by patent creators, or inventors, to create new products, 
services, modes of production, processes, frameworks, and/or other kinds of inventions 
used for enterprise building. Thus, the transformation of scientific knowledge into inter-
mediate, technology-based capital goods is embodied in the patents themselves. Finally, 
the high patent output indicates the availability of technology that helps in the produc-
tion of final goods, which then ultimately leads to economic growth.49

The results of the FE-IV regression are shown in Table  8, alongside the OLS, fixed 
effects, and GMM estimations. Due to the limited data on the instruments, the number 
of observations and groups in Table 8 is lower compared to the number of observations 

***  Significant at 1% level; ** significant at 5% level; *significant at 10% level. Robust (OLS, FE, GMM) and bootstrapped (AH) 
standard errors are enclosed in parentheses. AH estimation does not report a constant term. Values appearing in the table 
are based on the author’s calculation using the datasets available from the Google Patents Public Data, the Penn World 
Table, the World Bank Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Table 4  (continued)

Dependent 
Variable: 
real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Sargan-
Hansen 
overidenti-
fication test 
(p-value)

– – – 0.542 – – – 0.155

AR(1) 
(p-value)

– – – 0.999 – – – 0.003

AR(2) 
(p-value)

– – – 0.178 – – – 0.326

N 158 158 158 158 428 428 428 428

n 61 61 61 61 123 123 123 123

48  Although Pinto and Teixeira (2020) use research output instead of patents as a measure of knowledge as a good, the 
authors illustrate how research ultimately contributes to economic growth (see Fig. 1 of Pinto and Teixeira 2020).
49  Moreover, to strengthen the exogeneity assumption, only the NPL cited in the patents themselves is used as an 
instrument, rather than the entire population of scientific and academic publications. Hence, the instrument used has a 
direct causal link to patent creation and is more likely to manifest an effect on growth only through the patents.
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Table 5  Period estimations results, 1995–2019

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Real GDP 
growth rate 
per capita 
(t-1)

− 0.015 
(0.070)

− 0.004 
(0.040)

0.062 
(0.039)

0.002 
(0.109)

0.029 
(0.088)

− 0.187** 
(0.074)

− 
0.106*** 
(0.036)

− 0.182** 
(0.092)

Log of real 
GDP per 
capita (t-1)

− 0.377 
(0.264)

− 
1.790*** 
(0.660)

− 
2.004*** 
(0.545)

− 3.048** 
(1.512)

− 
0.491*** 
(0.173)

− 
3.412*** 
(0.934)

− 
3.230*** 
(0.615)

− 1.489 
(1.794)

Log of AI 
patents 
per million 
people

0.124 
(0.085)

0.207** 
(0.098)

0.256** 
(0.104)

0.741** 
(0.371)

– – – –

Log of total 
patents 
per million 
people

– – – – 0.219*** 
(0.077)

− 0.102 
(0.157)

− 0.109 
(0.150)

− 0.352 
(0.496)

Population 
growth rate

− 
0.512*** 
(0.157)

− 0.436** 
(0.197)

− 
0.451*** 
(0.112)

− 0.450 
(0.298)

− 0.239 
(0.151)

0.055 
(0.296)

0.071 
(0.133)

− 0.613 
(0.519)

Gross capital 
formation 
growth rate 
(per capita)

0.201*** 
(0.029)

0.206*** 
(0.028)

0.215*** 
(0.014)

0.232*** 
(0.067)

0.165*** 
(0.033)

0.114*** 
(0.035)

0.118*** 
(0.013)

0.154 
(0.101)

Government 
expenditure 
growth rate 
(per capita)

0.245*** 
(0.046)

0.227*** 
(0.046)

0.223*** 
(0.043)

0.291 
(0.192)

0.224*** 
(0.045)

0.177*** 
(0.049)

0.176*** 
(0.021)

0.180* 
(0.108)

Trade open-
ness (5-year 
average)

0.004* 
(0.002)

0.004 
(0.005)

0.004 
(0.005)

0.018* 
(0.010)

0.004*** 
(0.001)

0.017* 
(0.009)

0.015*** 
(0.005)

0.001 
(0.017)

Human 
capital index 
growth rate

− 0.193 
(0.179)

− 0.076 
(0.144)

− 0.064 0.375 
(0.718)

− 0.106 
(0.217)

− 0.028 
(0.264)

− 0.027 
(0.244)

0.115 
(0.810)(0.150)

Inflation 
(5-year aver-
age)

0.009 
(0.024)

0.005 
(0.027)

− 0.001 
(0.022)

− 0.103* 
(0.057)

0.027 
(0.025)

0.046* 
(0.027)

0.038 
(0.026)

0.140 
(0.120)

Advanced 
economy 
(dummy)

− 1.147** 
(0.556)

− 1.226 
(0.889)

– 2.417 
(1.745)

− 0.041 
(0.970)

1.463 
(2.570)

1.196 
(2.465)

12.930 
(10.580)

Advanced 
x Log of 
AI patents 
per million 
people

0.183 
(0.120)

0.305 
(0.218)

0.082 
(0.087)

− 0.749 
(0.494)

– – – –

Advanced x 
Log of total 
patents 
per million 
people

– – – – − 0.057 
(0.099)

− 0.187 
(0.310)

− 0.152 
(0.284)

− 1.504 
(1.254)

Constant 3.919* 
(2.003)

16.246*** 
(5.887)

– 25.426** 
(12.761)

3.940*** 
(1.198)

29.990*** 
(8.082)

– 17.880 
(15.970)

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – – 33 – – – 33
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and groups in the main results (see Table 3).50 For convenience, the same panel groups 
used in the FE-IV regression are used in the OLS, fixed effects, and GMM estimations as 
well to allow comparison of the estimates.

The log number of AI patents per million people is significantly positive in all models (at 
the 10% level in GMM and FE-IV), and the magnitudes of the AI coefficients are relatively 
consistent among the fixed effects, GMM, and FE-IV estimations in columns 2, 3, and 4 in 
Table 8, respectively. Notably, the magnitudes of the coefficients are larger than the estimates 
in the main results in Table 3. On the other hand, total patents are only significant and posi-
tive in OLS and fixed effects in columns 5 and 6. In addition, the magnitude of the coefficient 
of total patents in the FE-IV regression (column 8) is inconsistent with the other estimations.

Several tests were performed to check for the validity of the instruments in both the GMM 
and FE-IV models. The null hypothesis is not rejected for the Sargan-Hansen test for ove-
ridentifying restrictions in both the GMM and FE-IV estimations, suggesting no overiden-
tification in the first-stage regressions. This is true for both the AI and total patents models 
(columns 3, 4, 7, and 8 in Table 8). Meanwhile, the null hypothesis of the Kleibergen-Paap 
test for weak instruments is rejected for the FE-IV estimates of both the AI and total patents 
models, implying the first stage FE-IV regressions are not underidentified. Hence, both tests 
seem to confirm the validity of the instruments used, especially for the FE-IV estimations.

The p-values of the endogeneity test, however, differ between the AI patents and total 
patents models in FE-IV (columns 4 and 8). Under the null hypothesis, the regressors, or 
the instruments, can be treated as exogenous. Rejection of the null hypothesis means the 

*** Significant at 1% level; ** significant at 5% level; *significant at 10% level. Robust (OLS, FE, GMM) and bootstrapped (AH) 
standard errors are enclosed in parentheses. AH estimation does not report a constant term. Values appearing in the table 
are based on the author’s calculation using the datasets available from the Google Patents Public Data, the Penn World 
Table, the World Bank Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Table 5  (continued)

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Sargan-
Hansen 
overidenti-
fication test 
(p-value)

– – – 0.407 – – – 0.110

AR(1) 
(p-value)

– – – 0.005 – – – 0.004

AR(2) 
(p-value)

– – – 0.210 – – – 0.415

N 388 388 388 388 570 570 570 570

n 120 120 120 120 144 144 144 144

50  Both the current and lagged values of the (natural log) number of non-patent literature are used as instruments to 
ensure the validity and precision of the FE-IV estimates. Also, the interaction term between advanced economic status 
and patent variable is instrumented. The first stage results are available in Table 11 in the appendix.
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Table 6  Effect of patents on economic growth, advanced economies

*** Significant at 1% level; **significant at 5% level; *significant at 10% level. Robust (OLS, FE, GMM) and bootstrapped (AH) 
standard errors are enclosed in parentheses. Anderson-Hsiao estimation does not report constant term. Values appearing 
in the table are based on the author’s calculation using the datasets available from the Google Patents Public Data, the 
Penn World Table, the World Bank Development Indicators, and the United Nations National Accounts—Analysis of Main 
Aggregates

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Real GDP 
growth rate 
per capita 
(t − 1)

0.034 
(0.054)

− 0.065 
(0.054)

− 0.023 
(0.045)

− 0.040 
(0.056)

0.064 
(0.065)

− 0.059 
(0.042)

− 0.007 
(0.059)

− 0.070 
(0.110)

Log of real 
GDP per 
capita (t − 1)

− 0.618** 
(0.298)

− 2.159** 
(0.880)

− 1.999*** 
(0.587)

− 2.855* 
(1.611)

− 0.857** 
(0.360)

− 3.376*** 
(0.996)

− 3.121*** 
(0.609)

− 4.001 
(3.422)

Log of AI 
patents 
per million 
people

0.223*** 
(0.086)

0.367*** 
(0.116)

0.354*** 
(0.096)

0.299** 
(0.121)

– – – –

Log of total 
patents 
per million 
people

– – – – 0.250** 
(0.105)

0.151 
(0.146)

0.143 
(0.149)

0.010 
(0.432)

Population 
growth rate

− 0.295** 
(0.151)

− 0.317 
(0.234)

− 0.319*** 
(0.107)

− 0.025 
(0.249)

− 0.212 
(0.148)

− 0.347** 
(0.165)

− 0.358** 
(0.174)

0.19 (0.790)

Gross capital 
formation 
growth rate 
(per capita)

0.218*** 
(0.031)

0.205*** 
(0.032)

0.211*** 
(0.017)

0.248*** 
(0.040)

0.226*** 
(0.036)

0.205*** 
(0.040)

0.209*** 
(0.019)

0.167** 
(0.079)

Government 
expenditure 
growth rate 
(per capita)

0.359*** 
(0.062)

0.343*** 
(0.059)

0.337*** 
(0.039)

0.265** 
(0.120)

0.203*** 
(0.074)

0.206*** 
(0.068)

0.200*** 
(0.055)

− 0.0391 
(0.189)

Trade open-
ness (5-year 
average)

0.004** 
(0.001)

− 0.002 
(0.004)

− 0.002 
(0.004)

0.002 
(0.006)

0.004*** 
(0.002)

0.005 
(0.005)

0.005 
(0.004)

0.001 
(0.012)

Human 
capital index 
growth rate

0.091 
(0.260)

− 0.073 
(0.219)

− 0.071 
(0.209)

− 0.547 
(0.477)

− 0.002 
(0.188)

− 0.029 
(0.276)

− 0.039 
(0.289)

1.026 
(1.840)

Inflation 
(5-year aver-
age)

− 0.066*** 
(0.024)

− 0.063*** 
(0.023)

− 0.070*** 
(0.020)

− 0.099 
(0.063)

− 0.086** 
(0.044)

− 0.078* 
(0.044)

− 0.087*** 
(0.031)

− 0.009 
(0.207)

Constant 5.423** 21.465** – 28.858* 6.829** 34.180*** – 42.350

(2.706) (9.233) – (16.954) (2.799) (11.080) – (34.470)

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – – 42 – – – 28

Sargan-
Hansen overi-
dentification 
test (p-value)

– – – 0.750 – – – 0.683

AR(1) 
(p-value)

– – – 0.005 – – – 0.077

AR(2) 
(p-value)

– – – 0.766 – – – 0.967

N 299 299 299 299 352 352 352 352

n 53 53 53 53 53 53 53 53
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Table 7  Effect of patents on economic growth, less advanced economies

*** Significant at 1% level; ** significant at 5% level; *significant at 10% level. Robust (OLS, FE, GMM) and bootstrapped (AH) 
standard errors are enclosed in parentheses. AH estimation does not report a constant term. Values appearing in the table 
are based on the author’s calculation using the datasets available from the Google Patents Public Data, the Penn World 
Table, the World Bank Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Real GDP 
growth rate 
per capita 
(t − 1)

0.043 
(0.048)

0.030 
(0.030)

0.078* 
(0.045)

0.015 
(0.051)

0.006 
(0.057)

− 0.100* 
(0.053)

− 0.054 
(0.037)

− 0.024 
(0.100

Log of real 
GDP per 
capita (t − 1)

− 0.256 
(0.328)

− 1.606*** 
(0.480)

− 1.351* 
(0.718)

− 1.237 
(0.745)

− 0.282** 
(0.132)

− 1.659*** 
(0.475)

− 1.408*** 
(0.454)

− 0.113 
(0.934)

Log of AI 
patents per 
million people

0.031 
(0.073)

0.087 
(0.080)

0.076 
(0.122)

0.265 
(0.208)

– – – –

Log of total 
patents per 
million people

– – – – 0.159*** 
(0.056)

0.030 
(0.081)

0.027 
(0.118)

0.062 
(0.204)

Population 
growth rate

− 0.741*** 
(0.172)

− 0.559** 
(0.241)

− 0.680* 
(0.354)

− 0.228 
(0.456)

− 0.073 
(0.191)

0.857*** 
(0.271)

0.833*** 
(0.217)

0.271 
(0.816)

Gross capital 
formation 
growth rate 
(per capita)

0.113** 
(0.051)

0.111** 
(0.054)

0.114*** 
(0.016)

0.086 
(0.068)

0.164*** 
(0.025)

0.125*** 
(0.023)

0.129*** 
(0.012)

0.153 
(0.097)

Government 
expenditure 
growth rate 
(per capita)

0.198*** 
(0.037)

0.177*** 
(0.033)

0.176*** 
(0.045)

0.255* 
(0.135)

0.246*** 
(0.043)

0.194*** 
(0.040)

0.194*** 
(0.021)

0.454** 
(0.186)

Trade open-
ness (5-year 
average)

0.007*** 
(0.002)

0.009*** 
(0.003)

0.009*** 
(0.003)

0.004 
(0.004)

0.004** 
(0.002)

0.0110*** 
(0.004)

0.011** 
(0.004)

0.001 
(0.009)

Human capital 
index growth 
rate

− 0.066 
(0.183)

− 0.004 
(0.142)

− 0.017 
(0.262)

0.227 
(0.466)

0.029 
(0.176)

0.052 
(0.159)

0.057 
(0.217)

0.767 
(0.673)

Inflation 
(5-year aver-
age)

0.032 
(0.029)

0.031 
(0.029)

0.026 
(0.029)

− 0.006 
(0.058)

0.018 
(0.022)

0.019 
(0.021)

0.014 
(0.023)

− 0.022 
(0.206)

Constant 3.220 
(2.727)

14.108*** 
(4.136)

– 10.358* 
(6.138)

2.139* 
(1.131)

12.400*** 
(3.848)

– − 0.236 
(7.238)

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – – 55 – – – 28

Sargan-
Hansen ove-
ridentifcation 
test (p-value)

– – – 0.342 – – – 0.571

AR(1) (p-value) – – – 0.005 – – – 0.000

AR(2) (p-value) – – – 0.281 – – – 0.131

N 301 301 301 301 763 763 763 763

n 83 83 83 83 110 110 110 110
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Table 8  Estimation results with fixed effects-IV regression

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
GMM

(4)
FE-IV

(5)
OLS

(6)
FE

(7)
GMM

(8)
FE-IV

Real GDP 
growth rate 
per capita 
(t − 1)

0.087* − 0.081* − 0.029 − 0.018 0.003 − 0.135* − 0.160 − 0.100**

(0.045) (0.044) (0.052) (0.038) (0.078) (0.069) (0.107) (0.046)

Log of real 
GDP per 
capita (t − 1)

− 0.586*** − 4.223*** − 2.721*** − 2.964*** − 0.692*** − 2.703*** − 1.474 − 3.505***

(0.116) (0.665) (0.848) (0.795) (0.160) (0.661) (1.232) (0.863)

Log of AI 
patents 
per million 
people

0.222*** 0.668*** 0.535* 0.499* – – – –

(0.077) (0.172) (0.269) (0.256) – – – –

Log of total 
patents 
per million 
people

– – – – 0.217*** 0.207** 0.177 0.536

– – – – (0.080) (0.101) (0.221) (0.329)

Population 
growth rate

− 0.516*** − 0.614*** − 0.819*** − 0.563*** − 0.180 0.045 − 0.388 0.065

(0.131) (0.076) (0.218) (0.194) (0.162) (0.305) (0.350) (0.269)

Gross capital 
formation 
growth rate 
(per capita)

0.220*** 0.173*** 0.196*** 0.188*** 0.155*** 0.142*** 0.132** 0.141***

(0.023) (0.025) (0.032) (0.018) (0.040) (0.042) (0.063) (0.027)

Government 
expenditure 
growth rate 
(per capita)

0.291*** 0.258*** 0.309*** 0.211*** 0.262*** 0.233*** 0.347** 0.216***

(0.052) (0.043) (0.058) (0.037) (0.048) (0.052) (0.145) (0.040)

Trade open-
ness (5-year 
average)

0.003*** 0.003 − 0.001 0.001 0.003** 0.004 − 0.002 0.011***

(0.001) (0.003) (0.008) (0.003) (0.001) (0.003) (0.011) (0.004)

Human 
capital index 
growth rate

− 0.197 − 0.035 − 0.606 0.047 − 0.198 − 0.152 0.353 − 0.187

(0.121) (0.129) (0.428) (0.180) (0.215) (0.236) (0.743) (0.193)

Inflation 
(5-year aver-
age)

− 0.038* − 0.001 − 0.012 − 0.025 0.042 0.047 0.073 0.019

(0.020) (0.021) (0.051) (0.020) (0.031) (0.031) (0.080) (0.025)

Advanced 
economy 
(dummy)

0.521 3.797*** 2.134 1.945*** 0.106 1.801 6.973 7.114***

(0.412) (0.808) (1.815) (0.663) (0.733) (1.404) (4.611) (2.036)

Advanced 
x Log of 
AI patents 
per million 
people

− 0.120 − 0.743*** − 0.398 − 0.375*** – – – –
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regressors are not exogenous and thus may not be considered acceptable instruments. 
According to the test, the null hypothesis is not rejected for AI patents but is rejected 
for the total patents model at standard significance levels. The result indicates that the 
validity of instruments and parameter estimates is only applicable to the former, whereas 
estimates for the latter model are likely inconsistent and biased.

Overall, the results of the main estimations and robustness checks reveal a strong posi-
tive relationship between AI innovation and long-run economic growth. This is consist-
ent with the endogenous growth theories and with the findings of existing literature such 
as Kim and Lee (2015), He (2019), and Nguyen and Doytch (2022). On the other hand, 
total patents still contribute to long-run economic growth, albeit to a lesser extent com-
pared to more technical innovations such as those developed in ICT. This is particularly 
true to more recent observations in the dataset. Moreover, AI has had a more robust and 
significant effect on the long-run growth among advanced economies, while total innova-
tion exhibits almost no impact on growth for both advanced and emerging countries.

*** Significant at 1% level; ** significant at 5% level; *significant at 10% level. Robust standard errors are enclosed in 
parentheses. FE-IV estimation does not report a constant term. Values appearing in the table are based on the author’s 
calculation using the datasets available from the Google Patents Public Data, the Penn World Table, the World Bank 
Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Table 8  (continued)

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
GMM

(4)
FE-IV

(5)
OLS

(6)
FE

(7)
GMM

(8)
FE-IV

(0.083) (0.189) (0.395) (0.136) – – – –

Advanced x 
Log of total 
patents 
per million 
people

– – – – − 0.005 − 0.217 − 0.867 − 0.857***

– – – – (0.082) (0.166) (0.573) (0.252)

Constant 5.592*** 39.950*** 26.250*** – 5.465*** 24.110*** 14.180 –

(0.892) (6.257) (7.434) – (1.106) (6.117) (10.780) –

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – 46 21 – – 46 21

Sargan-
Hansen overi-
dentification 
test (p-value)

– – 0.983 0.138 – – 0.149 0.414

Kleibergen-
Paap underi-
dentification 
test (p-value)

– – – 0.000 – – – 0.000

Endogeneity 
test (for IV 
estimation, 
p-value)

– – – 0.605 – – – 0.000

N 258 258 258 326 692 692 692 836

n 65 65 65 65 135 135 135 135
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In addition, an IV estimation with fixed effects using cited NPL has been employed to further 
minimize the endogeneity issue. The FE-IV estimates are valid for the AI patents model, but 
not for the total patents model. The FE-IV estimates are also comparable with the results of 
other estimation techniques such as fixed effects and GMM, suggesting that cited non-patent 
references may serve as an instrument for specific types of patents such as those related to AI.

6 � Conclusion
Innovations in AI have been around as early as the 1970s, but their application and 
impact have only been more apparent and pervasive in the last ten to twenty years. The 
huge surge in AI and total patent registrations by the turn of the century, alongside the 
obvious physical and non-physical embodiments of innovative technologies consumed 
daily, is evidence of how AI and related technologies have changed the economic land-
scape. Several companies, especially those in e-commerce, have been leveraging natural 
language processing to predict customer behavior to increase sales. Meanwhile, mul-
tinational companies rely on AI and machine learning to optimize their supply chains 
through predictive scheduling, demand forecasting, inventory and risk management, 
and predictive maintenance among many other purposes (Rao and Verweij 2017; Ash-
croft 2023). In general, advancements in AI and related ICT technologies have ulti-
mately helped in modernizing production processes, minimizing manual inefficiency, 
and enhancing overall customer experience across firms and industries.

This study sets out to determine the relationship between the level of AI innovation and 
long-run economic growth, using a panel dataset across countries between 1970 and 2019. The 
main finding demonstrates that there exists a positive and significant impact of AI patenting on 
average long-run economic growth. Additionally, the effect of AI is more apparent in the latter 
period, because of the increasing quantity and quality of AI innovation generated over time. 
Overall, the positive impact of AI found in this study is consistent with the results of other stud-
ies focusing on AI and growth such as those by He (2019), Fan and Liu (2021), and Yang (2022).

Meanwhile, there is also some evidence of the positive contribution of total patent crea-
tion on economic growth. This positive effect of patenting is consistent with the findings of 
Wong et al. (2005), Kim and Lee (2015), and Nguyen and Doytch (2022). The effect, however, 
is notably smaller and weaker compared to the effect of AI patents on growth. Total patents, 
however, have exhibited significantly positive effects in the earlier periods of the dataset. The 
muted effect of patent publication on long-run economic growth is similar to the results 
found by Chu et al. (2016), Blind et al. (2022), and Nguyen and Doytch (2022) in their studies.

Furthermore, the effect of AI on growth is more robust among advanced econo-
mies, which is in line with the theory of machine automation proposed by Zeira (1998). 
Because of differences in capital endowments, not all countries can keep up with the pace 
of a constantly shifting technological frontier. As AI requires physical, and oftentimes 
ICT-related capital and technical know–how, not all countries can implement and use 
AI technologies effectively. In the meantime, more developed economies can leverage 
AI in production and business operations because of the availability of knowledge and 
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infrastructure that complement AI, which engenders a strong positive contribution of AI 
to economic growth.

Finally, cited non-patent references in AI patents may serve as a valid instrument for 
AI patent creation. The estimates obtained from the FE-IV regression are consistent 
with the fixed effects estimation and GMM, and are also supported by various tests on 
instrument validity. Further work on this topic is recommended to future researchers, 
either by discovering other possible instruments or expanding the use of the instrument 
to other types of patents and/or measures of innovation.

Appendix
See Tables 9, 10, 11, 12.

Table 9  Estimation results between patents and short-run economic growth

Dependent 
variable: 
real GDP 
growth rate 
per capita 
(annual)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Real GDP 
growth rate 
per capita 
(t − 1)

0.307*** 
(0.035)

0.288*** 
(0.034)

0.312*** 
(0.032)

0.260*** 
(0.047)

0.259*** 
(0.061)

0.207*** 
(0.057)

0.228*** 
(0.017)

0.232*** 
(0.055)

Log of real 
GDP per 
capita (t − 1)

− 0.830*** 
(0.185)

− 3.442*** 
(0.842)

− 2.909 
(2.022)

− 3.954*** 
(1.235)

− 0.498*** 
(0.125)

− 3.762*** 
(0.794)

− 2.991** 
(1.376)

0.460 
(0.805)

Log of AI 
patents 
per million 
people

0.181*** 
(0.069)

0.360*** 
(0.113)

0.359 
(0.490)

0.426* 
(0.253)

– – – –

Log of total 
patents 
per million 
people

– – – – 0.076 
(0.057)

0.195* 
(0.106)

0.194 
(0.267)

0.123 
(0.132)

Population 
growth rate

− 0.440*** 
(0.078)

− 0.386*** 
(0.114)

− 0.384* 
(0.227)

− 0.338 
(0.216)

− 0.310*** 
(0.084)

0.000 
(0.166)

− 0.003 
(0.403)

− 0.27 
(0.293)

Gross capital 
formation 
growth rate 
(per capita)

0.117*** 
(0.030)

0.107*** 
(0.033)

0.106*** 
(0.024)

0.061 
(0.062)

0.095*** 
(0.009)

0.090*** 
(0.009)

0.089*** 
(0.014)

0.082*** 
(0.027)

Government 
expenditure 
growth rate 
(per capita)

0.081*** 
(0.030)

0.083** 
(0.032)

0.082 
(0.053)

0.125* 
(0.071)

0.097*** 
(0.024)

0.091*** 
(0.023)

0.090*** 
(0.034)

0.094 
(0.057)

Trade open-
ness

0.007*** 
(0.002)

0.010** 
(0.004)

0.010 
(0.019)

0.020 
(0.015)

0.006*** 
(0.001)

0.009** 
(0.004)

0.009 
(0.012)

− 0.014 
(0.009)
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*** Significant at 1% level; ** significant at 5% level; *significant at 10% level. Robust (OLS, FE, GMM) and bootstrapped (AH) 
standard errors are enclosed in parentheses. AH estimation does not report a constant term. Values appearing in the table 
are based on the author’s calculation using the datasets available from the Google Patents Public Data, the Penn World 
Table, the World Bank Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Table 9  (continued)

Dependent 
variable: 
real GDP 
growth rate 
per capita 
(annual)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Human 
capital index 
growth rate

− 0.143 
(0.107)

− 0.196 
(0.136)

− 0.198 
(0.555)

− 0.416 
(0.371)

0.128 
(0.127)

− 0.004 
(0.135)

− 0.014 
(0.580)

0.215 
(0.268)

Inflation 0.002 
(0.010)

0.013 
(0.010)

0.013 
(0.023)

0.092 
(0.070)

− 0.001 
(0.012)

0.004 
(0.011)

0.004 
(0.024)

0.043 
(0.047)

Advanced 
economy 
(dummy)

0.931** 
(0.374)

1.596*** 
(0.477)

1.537 
(2.178)

2.197*** 
(0.762)

0.107 
(0.543)

2.486** 
(0.963)

2.375 
(2.499)

0.615 
(0.997)

Advanced 
x Log of 
AI patents 
per million 
people

− 0.165* 
(0.091)

− 0.370** 
(0.149)

− 0.368 
(0.558)

− 0.681** 
(0.275)

– – – –

Advanced 
× Log of 
total patents 
per million 
people

– – – – 0.029 
(0.078)

− 0.227 
(0.151)

− 0.212 
(0.390)

− 0.114 
(0.162)

Constant 7.706*** 
(1.560)

32.653*** 
(7.960)

– 37.607*** 
(11.363)

4.314*** 
(0.956)

32.655*** 
(7.035)

– − 2.888 
(6.704)

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – – 121 – – – 110

Sargan-
Hansen test 
(p-value)

– – – 0.143 – – – 0.375

AR(1) 
(p-value)

– – – 0.001 – – – 0.000

AR(2) 
(p-value)

– – – 0.236 – – – 0.727

N 2261 2261 2261 2261 4905 4905 4905 4905

n 120 120 120 120 141 141 141 141
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Table 10  Estimation results with the growth of Internet users

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

Real GDP 
growth rate 
per capita 
(t − 1)

− 0.003 
(0.052)

− 0.002 
(0.030)

0.048* 
(0.029)

− 0.104 
(0.084)

0.030 
(0.051)

− 0.072 
(0.045)

− 0.011 
(0.029)

0.089 
(0.060)

Log of real 
GDP per 
capita (t − 1)

− 0.227 
(0.233)

− 2.208*** 
(0.660)

− 2.002*** 
(0.574)

− 2.395** 
(1.068)

0.173** 
(0.070)

0.182 
(0.114)

0.172 
(0.120)

0.168 
(0.573)

Log of AI 
patents per 
million people

0.102 
(0.065)

0.277*** 
(0.083)

0.252** 
(0.104)

0.769** 
(0.346)

– – – –

Log of total 
patents per 
million people

– – – – − 0.408** 
(0.163)

− 3.309*** 
(0.747)

− 2.996*** 
(0.536)

− 1.395 
(1.669)

Population 
growth rate

− 0.589*** 
(0.104)

− 0.599*** 
(0.126)

− 0.619*** 
(0.104)

− 0.468 
(0.355)

− 0.303** 
(0.142)

− 0.241 
(0.225)

− 0.256** 
(0.116)

− 0.233 
(0.945)

Gross capital 
formation 
growth rate 
(per capita)

0.134*** 
(0.046)

0.124** 
(0.048)

0.128*** 
(0.013)

0.056 
(0.059)

0.121*** 
(0.032)

0.096*** 
(0.031)

0.099*** 
(0.013)

0.237** 
(0.114)

Government 
expenditure 
growth rate 
(per capita)

0.250*** 
(0.050)

0.229*** 
(0.047)

0.224*** 
(0.031)

0.455** 
(0.203)

0.190*** 
(0.035)

0.138*** 
(0.034)

0.138*** 
(0.022)

0.062 
(0.158)

Trade open-
ness (5-year 
average)

0.003** 
(0.002)

0.009* 
(0.005)

0.009* 
(0.005)

0.022** 
(0.009)

0.003*** 
(0.001)

0.012** 
(0.006)

0.012*** 
(0.004)

0.017 
(0.012)

Human capital 
index growth 
rate

− 0.040 
(0.122)

− 0.073 
(0.152)

− 0.061 
(0.147)

− 0.173 
(0.707)

0.055 
(0.139)

− 0.059 
(0.210)

− 0.043 
(0.194)

0.208 
(0.624)

Inflation 
(5-year aver-
age)

0.055 
(0.035)

0.048 
(0.034)

0.042* 
(0.022)

0.025 
(0.054)

0.061** 
(0.027)

0.066** 
(0.028)

0.059** 
(0.024)

− 0.062 
(0.195)

Internet users 
growth rate 
(5-year aver-
age)

0.006 
(0.006)

0.001 
(0.005)

0.000 
(0.007)

0.016 
(0.027)

0.008 
(0.006)

0.008 
(0.006)

0.007 
(0.005)

− 0.014 
(0.035)

Advanced 
economy 
(dummy)

− 0.287 
(0.327)

0.690 
(0.570)

0.541 
(0.646)

2.825** 
(1.113)

0.379 
(0.713)

3.995 
(2.517)

3.555* 
(2.054)

4.247 
(7.260)

Advanced 
× Log of AI 
patents per 
million people

− 0.054 
(0.073)

− 0.270* 
(0.156)

− 0.233* 
(0.127)

− 1.043*** 
(0.345)

– – – –

Advanced × 
Log of total 
patents per 
million people

– – – – − 0.084 
(0.079)

− 0.516* 
(0.294)

− 0.468** 
(0.238)

− 0.566 
(0.908)

Constant 3.095* 
(1.806)

20.597*** 
(5.951)

– 20.330** 
(9.692)

3.570*** 
(1.136)

28.720*** 
(6.496)

– 11.410 
(14.600)

Time dum-
mies

Yes Yes Yes Yes Yes Yes Yes Yes

Number of 
instruments

– – – 55 – – – 27

Sargan-
Hansen test 
(p-value)

– – – 0.405 – – – 0.149

AR(1) (p-value) – – – 0.003 – – – 0.002
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*** Significant at 1% level; ** significant at 5% level; *significant at 10% level. Robust (OLS, FE, GMM) and bootstrapped (AH) 
standard errors are enclosed in parentheses. AH estimation does not report a constant term. Values appearing in the table 
are based on the author’s calculation using the datasets available from the Google Patents Public Data, the Penn World 
Table, the World Bank Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Table 10  (continued)

Dependent 
Variable:
Real GDP 
growth rate 
per capita 
(5-year 
average)

(1)
OLS

(2)
FE

(3)
AH

(4)
GMM

(5)
OLS

(6)
FE

(7)
AH

(8)
GMM

AR(2) (p-value) – – – 0.741 – – – 0.659

N 463 463 463 463 676 676 676 676

n 119 119 119 119 143 143 143 143

Table 11  First-stage FE-IV regression results

*** Significant at 1% level; **significant at 5% level; *significant at 10% level. Robust standard errors are enclosed in 
parentheses. FE-IV estimation does not report a constant term. Values appearing in the table are based on the author’s 
calculation using the datasets available from the Google Patents Public Data, the Penn World Table, the World Bank 
Development Indicators, and the United Nations National Accounts—Analysis of Main Aggregates

Instruments Instrumented Variables

(1)
Log of AI patents 
per million people

(2)
Advanced × Log 
of AI patents per 
million people

(3)
Log of total patents 
per million people

(4)
Advanced × Log of 
total patents per 
million people

Log of cited non-
patent literature

0.182*** (0.038) − 0.060*** (0.020) 0.172*** (0.033) 0.001 (0.011)

Log of cited non-
patent literature (t − 1)

0.058* (0.032) 0.010 (0.021) 0.088*** (0.027) 0.011 (0.011)

Advanced × Log 
of cited non-patent 
literature

− 0.048 (0.049) 0.240*** (0.040) 0.009 (0.040) 0.253*** (0.024)

Advanced × Log 
of cited non-patent 
literature (t − 1)

0.007 (0.034) 0.101*** 0.031) − 0.022 (0.020) 0.012 (0.014)

Real GDP growth rate 
per capita (t − 1)

0.064*** (0.021) 0.020 (0.015) 0.016 (0.013) 0.006 (0.005)

Log of real GDP per 
capita (t − 1)

1.484*** (0.365) 0.332 (0.303) 1.090*** (0.306) 0.116 (0.109)

Population growth 
rate

− 0.111** (0.048) − 0.049 (0.044) − 0.132*** (0.037) − 0.101*** (0.022)

Gross capital forma-
tion growth rate (per 
capita)

− 0.003 (0.012) − 0.00567 (0.009) 0.007 (0.005) 0.003 (0.002)

Government expendi-
ture growth rate (per 
capita)

0.075*** (0.023) 0.026 (0.022) 0.016 (0.010) 0.006 (0.004)

Trade openness 
(5-year average)

− 0.001 (0.002) 0.001 (0.002) − 0.000 (0.001) 0.001 (0.001)

Human capital index 
growth rate

− 0.223** (0.112) − 0.090 (0.077) − 0.098 (0.068) − 0.030 (0.035)

Inflation (5-year aver-
age)

− 0.007 (0.014) − 0.002 (0.011) 0.005 (0.008) − 0.004 (0.004)

Advanced economy 
(dummy)

0.290 (0.411) 2.201*** (0.437) 0.102 (0.411) 5.511*** (0.283)

Time dummies Yes Yes Yes Yes

N 326 326 836 836

n 65 65 135 135
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