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Abstract 

Network linkage is important in evaluating macroeconomic performance since input‒
output networks across industries are asymmetric and respond differently to external 
shocks. While most studies implicitly assume elastic substitution between intermedi-
ates and factors using Cobb‒Douglas models, this is often improbable since the input‒
output structure may change due to the shocks, which would be observed as non-
linearities in macroeconomic impacts on sectoral shocks. Additionally, considering 
regionally located sectors such as the agriculture and food-processing industries, 
the propagation of sectoral shocks can be interregionally correlated. This study 
employs the network linkage model to empirically verify the interaction of agro-food 
sectoral shocks in regional outcomes. By comparing the network effects influencing 
the national economy and regional economy, the superiority of considering intrare-
gional networks among agro-food sectors is empirically verified; thus, productivity 
shocks arising in these industries propagate more intensively within their own region.

Keywords: Network linkage model, Interregional input–output table, Agro-food 
supply chain, Regional economy

1 Introduction
In Japan, demand for processed foods is growing, with extensive use of agricultural 
products supplied for these industries (Shimowatari 2003; Takayanagi 2006; Akune 
2004). In 1980s, as farming costs increase, the food processing industries started to 
relocate its supply chain to East Asian and Southeast Asian countries, outsourcing the 
stable and bulk procurement of ingredients abroad. Under the globalization, however, 
domestic produces are still supplied to processed foods for its better quality, safety 
and transparency of origins or due to the constraints of perishability and transporta-
tion costs. Consequently, the food processing industries, not fully fragmented unlike the 
other manufacturing sectors, mostly consist of those firms that locate between agricul-
tural production and local consumption areas, except some items that agglomerate in 
the metropolitan area for proximity to large-scale consumption and port facilities, such 
as beverage industries and wheat processing industries, respectively (Akune 2004). On 
the other hand, following a global trend, the supply chains destined for a major market 
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are turning into more complex system as food processing firms are strongly connected 
and even vertically integrated to its metropolitan customers (i.e., large-scale retailers) 
for fresh food quality control, transaction cost reduction, and information utilization for 
efficient logistics (Rong et al. 2011; Hobbs and Young 2000; Prajogo and Olhager 2012). 
Agro-food supply chain network is rather asymmetric across regions, and therefore, 
regional perspectives are important when evaluating economic impacts from sectoral 
idiosyncratic shocks.

For example, the vertical integration is subject to criticism on its vulnerability to 
supply chain interruption such as transport delays and cost increases after the Covid-
19 pandemic (Nagurney 2021). In this regard, self-sufficient supply chains turned out 
robust to such risks and resilient even if disrupted since they are less distanced to pro-
duction and local consumers. This suggests that the structure of minor sectors, such as 
agro-food sectors that account for only 10 percent of GDP in Japan, might matters in the 
wake of macroeconomic tail risk. The question is generally whether such a regional dif-
ference is attributed to these industries’ characteristics that locate in specific regions to 
input geographically irreplaceable production factors (i.e., land and climate) and inter-
mediates locally reproducible (i.e., perishable local produces) and supply to local con-
sumers with preferences diversified in each region.

This study provides asymmetric input‒output network linkages in agricultural and 
food industries across nine domestic regions. The study first propose a network linkage 
model generalized with the nested CES function system with modifications such that 
the interregional input‒output structure is incorporated, and second, empirically exam-
ine the direction of propagation of sectoral shocks by comparing its intensity toward 
regional output and national output. This study incorporates two crucial parameters in 
this regard: elasticities of substitution, namely, the degree to which factors and interme-
diates are substituted between sectors and regions, and an input‒output multiplier that 
scales the ripple effect that arises from the presence of intermediates in a region (e.g., 
raw materials from agriculture to food-processing industries). If those parameters signif-
icantly vary between regions and do not converge into a common trend in a long term, 
it will be a concern that even if each region gains from unitary productivity growth, the 
outcomes to regional economies are not equal because of the asymmetric property of 
ripple effect.

The results are summarized as below. Unit productivity shocks only in the agro-food 
sectors propagate more intensively toward regional economy than toward national 
economy. This can be attributed to the network linkage model employed in this study 
that allows endogenous changes in input–output structure (i.e., changes in expenditure 
share of input). For example, assuming positive productivity growth in agricultural sec-
tor, food processing sector in downstream adopts the technology to use local produces 
in its own region more intensively. Even when productivity falls temporally, the nega-
tive impact on regional economy is mitigated if the products is elastically substitutable 
among related industries. The source of superiority of intraregional linkage is that these 
industries trade most of intermediate goods with the counterpart located in the same 
region. Intuitively, the primary reason for intense intraregional network is a greater 
share of intermediate goods and factor from the own region within and between agricul-
tural and food processing industries.
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A major contribution of this paper is the application of the network linkage model of 
Baqaee and Farhi (2019a) to an interregional input‒output scheme. The model is suc-
cessfully generalized with the nested-CES function system so that it captures nonlin-
earities in macroeconomic impacts on sectoral shocks, which are derived from the 
aforementioned parameters.

The outline of this paper is organized as follows. Section 2 discusses the contributions 
of the related literature on the network linkage model and clarifies their limitations. 
Then, Sect. 3 reviews the generalized network linkage model of Baqaee and Farhi (2019a) 
and provides an interpretation to fit in the interregional scheme. Section 4 introduces an 
estimation strategy for the crucial parameters and data structure. Finally, Sect.  5 pre-
sents the quantitative implications of the results.

2  Related literature
Studies that focus on supply chain have developed to deal with a couple of issues in the 
contemporary food supply chains, and a considerable number of them employ the con-
cept of network in order to analyze the complexity of extensive supply chains. In the 
early 2000s, the performance of food supply chain was measured by five key indicators: 
product availability, product quality, responsiveness to demand, distribution reliability 
and total cost of production and distribution, according to Vorst (2005). Originally, the 
interactions between food channel members (i.e., farms, manufacturers, retailers and 
logistics firms) emerged from vertical integration in order to minimize the transaction 
costs though technological, regulatory and socio-economic characteristics with each 
commodity drive them differently (Hobbs and Young 2000). Bourlakis (2008) indicates, 
as food supply chains become more complex through spatial extension in material pro-
curement and product distribution, outsourcing decision in logistics have been com-
mon among EU member states. In fact, Hsiao et  al. (2006) empirically examines that 
the degree of complexity in food supply chain of dairy and veal sectors is associated to 
degree of outsourcing. Additionally, Prajogo and Olhager (2012) reveals that informa-
tion technology capability and information sharing with supply chain partners have sig-
nificant effects on logistics integration and indirectly on operational performance with 
data from Australian firms. Today, there are multiple options of collaboration other 
than buyer–seller relationships such as foreign direct investment to original equipment 
manufacturers abroad, outsourcing logistics to specialized firm that provide distribution 
center and information sharing throughout the food supply chain.

Recently, supply chain management is more likely to be discussed in the context of 
network optimization as criteria on decision-making are more diversified due to uncer-
tainty. Apte (2010), for instance, investigates the contributing factors to vulnerability of 
supply chain disruption such as topological structure, traceability and product commu-
nication, following a specific case of E. coli contamination in packaged spinach in the 
US. Rong et al. (2011), on the other hand, provide a linear programming model used for 
production and distribution planning that integrates quality degradation of fresh foods 
since designing an optimal supply chain requires both food quality and cost criteria. 
Theoretically, Baghalian et  al. (2013) develop a stochastic formulation model used for 
selecting robust supply chain network under supply-side uncertainties, providing with a 
real-life case study for rice distribution. According to Davis et al. (2021), environmental 



Page 4 of 38Ishikawa  Journal of Economic Structures           (2023) 12:22 

shocks such as extreme rainfall and temperatures are now potential risks in food produc-
tion and distribution as it is more frequent to observe these variabilities, and its propa-
gation to supply chains and response from supply chain actors determine resilience to 
those shocks.

After experiencing a couple of natural or epidemiological disasters in this decade, 
supply chain studies pay more attention to economy-wide phenomena that affect the 
entire supply chain network through propagation. Inoue and Todo (2019) and Todo et al. 
(2015) put emphasis on indirect effects of the Great East Japan Earthquake in 2011 that 
affect firms that locate outside of the earthquake-devastated area but have business rela-
tionship with directly damaged firms. Todo et al. (2015) also suggests that networks with 
firms outside of the impacted area contributed to the earlier resumption of production 
as a general effect among manufacturing industries. Hobbs (2020) reports a wide range 
of COVID-19 impacts to Canadian food supply chains from labor shortages in long-haul 
truckers by movement restriction to isolation/quarantine regulations in the Canadian–
US border, which simultaneously caused short-run disruption of food transportation 
and distribution networks. Nagurney (2021) especially focuses on the labor availabil-
ity among perishable food supply chain under the COVID-19 pandemic. It proposes a 
general network optimization model that incorporates labor availability at every node of 
supply chain: production, processing, storage and distribution and quality deterioration 
as well. It is subject to further research what factors contribute to vulnerability or resil-
ience of food supply chain and to what extent they have an impact on the economy, but 
Hobbs (2020) and Renting et al. (2003) refer to a potential benefit of local food supply 
chain or short food supply chain.

Although the literatures on network optimization are rich, they are not incorporat-
ing the feature to agro-food sectors: immobility of input and output, which is a primary 
source of regional or sectoral differences in economic impacts observed in the previ-
ous studies. Besides, responsiveness of agro-food sectors to macroeconomy are not 
compared to other manufacturing and service sectors, considering tail risks propagate 
regardless of sectoral division. Such an incorporation can provide useful insight for poli-
cymakers in the wake of economy-wide disaster since they need to prioritize regions and 
industries to be supported.

By the way, the multisector general equilibrium framework, first developed by Long 
and Plosser (1983), show that input‒output linkages can neutralize the force of the law of 
large numbers; idiosyncratic shocks in a sector are not negligible and can translate into 
aggregate fluctuations in macroeconomic variables if the sector is particularly important 
as a supplier to other sectors. Then, Acemoglu et al. (2012) proposes the modern net-
work linkage model and, in the theoretical framework, shows that macroeconomic vola-
tility comes from sectoral idiosyncratic shocks if the scale of the firm in the center of the 
vast production network is significantly large. Their work is based on a Cobb‒Douglas 
model following the context of Long and Plosser (1983).

Following this framework, a series of empirical contributions arose, targeting idiosyn-
cratic tail risks. Carvalho et al. (2021) identify the role of input‒output linkages among dis-
aster-stricken firms affected by the Great East Japan Earthquake in 2011, which accounted 
for a 1.2 percentage point decline in Japan’s gross output. As another example, Barrot and 
Sauvagnat (2016) find that US firms affected by natural disasters have negative effects on 
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their customers and that this effect translates into other downstream suppliers. As a rele-
vant study, Acemoglu et al. (2017) theoretically imply that a large-scale economic downturn 
can emerge under two conditions: sufficient heterogeneity in sectoral Domar weights (or 
asymmetric distribution of sectoral output share in GDP) and sectoral shocks that exhibit 
tail risks.

The studies above focus on the nature of the network in the input‒output structure, 
while they mostly use the Cobb‒Douglas production function that allows perfect substi-
tution between intermediates and factors. In turn, Baqaee and Farhi (2019a) argue that 
Cobb‒Douglas models, where the input‒output matrix is constant and can be treated as 
exogenous, are a very special case in which Hulten’s theorem globally holds; more generally, 
the input‒output matrix responds endogenously to shocks. For this reason, they establish 
a second-order approximation of Hulten’s theorem in which the macroeconomic impact 
of sectoral shocks is nonlinear and its source is microeconomic details of the production 
structure shaped by the nested CES function system. In relation to the original framework, 
as noted in the literature, one can experience macroeconomic tail risk without either fat-
tailed shocks or fat-tailed Domar weights resulting from the second-order impact of secto-
ral shocks.

Among the few works that study endogenous changes in industrial structures, Acemo-
glu et al. (2016) empirically examine propagation based on the conventional Cobb‒Douglas 
type framework, including geographic overlay as a consequential effect of industrial agglom-
eration. For example, as their paper notes, the more an enterprise procures production fac-
tors and intermediate goods from local suppliers, the propagation of surplus value added 
is through an intensive increase (or decrease) in the employment of its suppliers and other 
industries located upstream. This impact of industrial agglomeration is verified by other 
empirical analyses, such as those of Autor et al. (2013) and Mian et al. (2013). Although 
Acemoglu’s framework treats geographic overlay as an ad hoc effect that is not necessarily 
incorporated into the theoretical model (partly explained in Acemoglu and Azar (2020)), it 
is possible to consider it as a special case of Baqaee’s generalized network model (perhaps 
this is a reason why it is named ‘generalized’) since the geographical overlay, i.e., nonlinear 
changes in value added over local industrial clusters, is very similar to what Baqaee calls the 
sectoral change in Domar weights.

This study applies the theoretical framework of the generalized network linkage model to 
make the following contributions:

1. Incorporate the heterogeneity of goods produced by different regions and modify the 
model into one with a regional network.

2. Empirically estimate the elasticity of substitution, a crucial parameter in the general-
ized network model.

3. Compare regional propagation (i.e., impact on the regional economy) with its 
national counterpart for agro-food sectors among the other manufacturing and ser-
vice sectors.
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3  Network linkage model
3.1  Review of generalized network linkage model

The framework developed by Baqaee and Farhi (2019a) is based on transitions from 
one state to another in general equilibria just as conventional network models, 
although the transition period varies in empirical approaches from the annual to the 
quadrennial, which is as long as the standard business cycle. The general framework 
is therefore normal as described in Sect. 3 of their paper. The core of their work is the 
second-order approximation of Hulten’s theorem (Hulten (1978)):

where Y  is the aggregate output function, Ai is Hicks-neutral technology in the produc-
tion of good i, and �i = piyi/GDP is the sales of producer i as a fraction of GDP or the 
Domar weight. The second-order approximation of the aggregate output with respect to 
productivity is written as:

where Y  is the aggregate output evaluated at the steady-state technology values. The 
coefficient of the second-order term in the approximated equation is interpreted as the 
source of nonlinearities in macroeconomic impacts on sectoral shocks.

To evaluate the second-order term, they define two crucial parameters: first, the gen-
eral equilibrium pseudo elasticities of substitution ρji in reciprocal form is defined as:

where Yi is the first derivative of the aggregation function with respect to Ai . It measures 
the percentage change in the relative Domar weight of j and i in response to a unitary 
change in the technology of i by the different notion of Hulten’s theorem YiAi = �i.

The second parameter is the input‒output multiplier ξ defined as:

If ξ > 1 , the sum of each sector’s output is larger than GDP, which indicates that 
there are intermediate inputs. ξ captures the percentage change in aggregate output in 
response to unitary changes in each technology; therefore, as they note in their paper, 
it is a notion of returns-to-scale at the aggregate level.

By a simple derivation with the parameters above, the coefficient of the second-
order term can be rewritten as follows (Theorem 2 in Baqaee and Farhi (2019a)):
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where the first term in parentheses is the total change in relative Domar weights in sec-
tor j other than i and the second is a change in the return-to-scale of aggregate output, 
weighted by �i/ξ that is the output share of sector i.

Hulten’s theorem globally holds if one assumes a Cobb‒Douglas model. Intuitively, 
the value of elasticities of substitution is one for every sector by definition; thus, the 
first term is zero. In turn, the input‒output multiplier is interpreted as a notion of 
constant returns-to-scale since a change in a Domar weight is always offset by another 
if sectoral output is perfectly substitutable in aggregation.

3.2  Data structure

The parameters defined above play crucial roles both in quantitatively evaluating mac-
roeconomic impacts by the second-order term and gaining implications from microeco-
nomic characteristics in the sector of interest. While the former is already shown above, 
the latter requires the data structure used in the empirical approach.

A nested CES economy in standard form is defined by the share parameter ω and elas-
ticity of substitution θ for intermediates N and factors F. ω corresponds to the input‒
output matrix (NR+ 1+ FR)× (NR+ 1+ FR) in share form, which consists of the 
first row and column as final demand, the next NR rows and columns as N goods for R 
regions, and the last FR rows and columns as F factors for R regions. Production factor 
yfs , assuming inelastic supply, are modeled as the production function in share form,1

The goods are modeled as nodes of nested CES production functions in share form,

where xir,js are intermediate inputs from sector j in region s used by i in r and ωir,js are 
the share parameters for this pair of input and output. Output sector 0 represents final 
demand, and its production function in share form is the aggregator:

where Yr is the aggregate output and y0r is the final demand in region r.
The market clearing condition for goods and factors with respect to jsth output is,

The share parameter ω is imposed with restrictions such as:

yfs
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1 In share form of production function, overline symbols such as yfs  refer to the amount in steady state.
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Figure 1 illustrates these properties above in an input‒output table. Let us clarify that 
the input–output notations are opposite to the conventional, for the model strictly fol-
lowing that of Baqaee and Fahri (2019a). In this figure, a row corresponds to factor and 
intermediate inputs demanded by the row sector while a column corresponds to outputs 
supplied to the column sector.

In addition, let us introduce the input‒output covariance defined by Baqaee and Farhi 
(2019a) as the correspondence with interregional input‒output tables. It is defined with an 
input‒output matrix in share form whose (ir,js) element is equal to the steady-state value:

and the Leontief inverse matrix:

where the (ir,js) element is a measure of producer ir’s total reliance on supplier js.
Then, the input‒output covariance in interregional input‒output tables is defined as:

It is the covariance between the irth and jsth raw of the Leontief inverse matrix for an 
arbitrary kvth node of nested CES production functions as distribution. Since � are the cor-
respondence with ω and sum to 1 with respect to column, a pair of raw elements (ir, js) in 
kvth column can be regarded as variables distributed on the kvth production. As intuitive 
implication, another luth input supplier may be affected when there is a unitary increase in 
output of irth or jsth sector, which can be normalized for expenditure shares between luth 
and irth or jsth sectors by kvth production. If the distribution of (ir, js) is positively (or nega-
tively) correlated, the pair of sectors (ir, js) are complementary (or substitutes).
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3.3  Corresponding parameters

With the input‒output covariance defined above, one can numerically evaluate the coef-
ficient of the second-order term (Baqaee and Farhi (2019a), Proposition 7):

where its sign and scale are determined by three subparameters:

 I. Substitutability/complementarity of a pair of sectors: Cov�kv

(
�ir ,�js

)
,

 II. Production technology of an arbitral sector kv:θkv and
 III. Domar weight of an arbitrary sector kv : �kv.

The first determinant is a change in industrial structure that arises on the demand 
side; namely, when an arbitrary enterprise kv increases its expenditure share on an inter-
mediate good ir by one unit; it measures the correlation with another intermediate js ’s 
expenditure share in kv ’s production. The second determinant, on the other hand, is a 
change in industrial structure that arises on the supply side; when the relative price of 
intermediate goods changes, it measures the elasticity by which the expenditure share 
of enterprise kv will change. Finally, the third determinant is the weight of enterprise kv ’s 
production, which determines the scale of impact when a productivity shock arises. By 
summing these factors for all enterprises in the supply chain between ir and js , the non-
linear impact of shock in sector ir propagated to sector js is evaluated. This coefficient is 
also described as the variation in the sector’s Domar weight to another sector’s produc-
tivity change, as described in Eq. (7).

In Eq. (5), the coefficient of the second-order term consists of two effects: the change 
in the relative Domar weight among other industries and the variation of the input‒out-
put multiplier after being affected by the productivity shock in sector ir . Since the input‒
output multiplier captures the percentage change in aggregate output in response to 
unitary productivity change in sector ir , the latter effect can be interpreted as how much 
more (or less) intensively all the other sectors in the supply chain will procure ir ’s prod-
uct as an intermediate. As shown in Eq. (8), the elasticity of the input‒output multiplier 
can be rewritten as the sum of the variation in other sectors’ Domar weights. Hereinaf-
ter, let us focus on the change in the input‒output multiplier and define it as the network 
effect νir , which represents the aggregate change in industrial structure centered on the 
productivity shock in sector ir:

3.4  Model specification

The preliminaries under the derivation of Eq. (8) is identical to that of Baqaee and Farhi 
(2019a). In this sense, there are two important caveat to the implication of this equation: 
(i) regionally differentiated inputs are tradable over regions without any varriers or costs, 
and (ii) the CES technology is quite simplified in which intermediate goods and a single 
factor is aggregated into output under nonnested production functions.
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The first concern can be paraphrased that the model is not fully specified open 
economy. Any transportation costs or trade varriers over regions are not considered. 
Although the input–output data employed for empirical approach in the later section 
incorporate the transportation and distribution margins as inputs to the corresponding 
industries, it does not formally constrain the change of input–output structures speci-
fied by Eq. (7) or (8). Since the model is applied to Japan’s regional production networks, 
instead of international trades, the theoretical defect might cause only limited distor-
tions. Nevertheless, it should be noted for future studies that the share of transporta-
tion cost is relatively high for some agro-food products if they are distributed by cold 
chain logistics, and that some raw produces are not distributable over long distances due 
to perishability. To incorporate such conditions, Caliendo et al. (2018) and Baqaee and 
Fahri (2019b) suggest a trade-oriented network model with iceburg trade costs.

Though the CES technology is common to related studies, this study employs non-
nested CES production functions for a single factor and a variety type and origin of 
inputs. Simplification highlights the dynamics of input–output structures at expense of 
intuitive implications. Namely, the subparameter θ plays an important role in measuring 
network effects, yet it might be difficult to find its analogy to production practices in the 
reality. The framework by Nakano and Nishimura (2023) and Atalay (2017) propose the 
nested CES model consistent with empirical approach, which is subject to implementa-
tion for further research.

4  Empirical approach and data
Following the theoretical derivation in the former section, network effects are evalu-
ated by three subparameters, two of which (i.e., input‒output covariance and Domar 
weight) can be calculated from interregional input‒output tables. These are the steady-
state parameters at each observation of the industrial structure; thus, they are time-var-
ying. On the other hand, the other subparameter, θ , as the production technology of an 
arbitrary enterprise, is the elasticity of substitution in the nested CES function system, 
which is unaffected by productivity shocks or time trends; thus, it is time-invariant. As 
described in Eq. (7), θ is an important parameter that determines the sign and scale of 
the coefficient of the second-order term, similar to the case of network effects (in a spe-
cial case, as θ converges to 1, the function system becomes Cobb‒Douglas; therefore, the 
second-order term is zero). This section estimates the value of θ for all sectors, assuming 
regional differences within the same industry, to calculate network effects in the next 
section.

The elasticity of substitution represents a change in intermediate demand in accord-
ance with a unitary change in its relative price, which affects the intensity of propa-
gation of productivity shocks into the economy. Additionally, it is a sector-specific 
time-invariant parameter and needs to be predetermined as an exogenous variable to 
the generalized network linkage model. Therefore, the model requires the parameter to 
be estimated using an econometric method for calculating robust coefficients; however, 
Baqaee and Fahri (2019a; b) ultimately employ an analytical approach, with a dozen vari-
ations for the parameter to simulate the impact of second-order terms.
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In the literature on spatial computable general equilibrium (SCGE), assuming the same 
nested CES system as under the Armington approach, some studies estimate spatially 
differentiated elasticities of substitution.2 A similar empirical approach can be employed 
in this study, but assuming asymmetric propagation in the interregional trade of inter-
mediate goods (i.e., assuming different production technologies across regions enables 
different propagation even if shocks arising in every region are identical) requires esti-
mation for each industry and region. In a previous study that estimated the elasticity of 
substitution for the network model, Atalay (2017) estimates the elasticity of substitution 
for a network model covering 30 industries, including agriculture and food processing, 
in the United States. The present work employs an empirical method to estimate the 
elasticity of intermediate goods across 9 regions in Japan.

4.1  Estimation of elasticities of substitution

For simplicity, let us assume an economy with a single aggregated production factor, 
nonnested CES production function and no capital formation (consumption, investment 
and inventory are aggregated into a single final demand). Additionally, let us assume 
Hicks-neutral productivity that is exogenous to trade and allow net exports in interna-
tional and interregional trade to be aggregated into the single final demand.3

Under these assumptions, the CES production function in sector ir can be written 
with the time-series notation t,

where ỹtir and x̃tir,js are quantities of output and input, respectively, and ω represents 
the cost shares of factor and intermediate inputs in steady state, which are assumed to 
depend only on productivity shocks and variations in relative prices.

Following the derivation by Atalay (2017), by minimizing the cost of the represent-
ative enterprise in sector ir , the equation to be estimated is in log-linear form of the 
expenditure share ptjsx̃

t
ir,js/p

t
ir ỹ

t
ir , its relative price ptjs/p

t
ir and Hicks-neutral productivity 

At
ir , with 1− θir as a coefficient, as shown in Eq. (10). Since ptir ỹ

t
ir and ptjsx̃

t
ir,js are identi-

cal to the values of output and input, respectively, they are yir and xir,js in the notation of 
regional input‒output tables defined in the previous section.

This equation suggests that θir − 1 can be regarded as the elasticity of the expenditure 
share in response to changes in relative prices and productivities. For instance, if any of 
the relative prices of intermediate inputs increase, then the enterprise will minimize its 
expenditure by reducing the share of the input. In this regard, the response will be elastic 

(9)ỹtir = At
ir

(
∑

s

∑
j

(
ωir,js

) 1
θir

(
x̃tir,js

) θir−1
θir

) θir
θir−1

(10)�log
ptjsx̃

t
ir,js

ptir ỹ
t
ir

= −(θir − 1)�log
ptjs

ptir
+ (θir − 1)�logAt

ir + ǫtir

2 For studies that estimated the elasticity of substitution of agricultural and food products while allowing for regional 
differentiation of goods and interregional trade, see Koike et al. (2012), Koike and Naka (2014), and Ishikura and Ikeda 
(2018); their estimates are introduced in a later section for comparison and validation of my estimates.
3 Nevertheless, trade and productivity are usually considered mutually correlated (e.g., a decrease in TFP might allow 
for expanded imports), but this assumption will be empirically examined in future work.
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(inelastic) if θir is greater than 1 (smaller than 1). In the Cobb‒Douglas case ( θir con-
verges to 1), an increase in price is perfectly offset by a decrease in quantity so that the 
expenditure share remains constant.

4.2  Data

For the estimation of θ , this research employs multiple published statistics, with some 
estimation of missing figures and extension of input‒output tables (summarized in 
Table 1), to create an annual dataset for the period 1970–2015 on a fiscal year basis. 
Statistics and associated publishing agencies are Prefectural Accounts (Cabinet 
Office), R-JIP (RIETI), Interregional Input‒Output table (METI), Distribution Cen-
sus (MLIT) and Consumer Price Index (MIC). While prefectural data are available in 
Prefectural Accounts, R-JIP and the Distribution Census, the Input–Output tables are 
based on their own regional classification as shown in Table 2 and Fig. 2, so the rest of 
the statistics need to be aggregated to match this classification.

Table 1 Variables and corresponding data

(1) For pre-1990 data in prefectural accounts, food processing classification is aggregated into manufacturing and 
decomposed by this study

(2) Interregional input‒output table is extended for unpublished 2010 and 2015 years by RAS

Variables Data Publications Year

Air Factor neutral productivity 
in sector ir

Time dummy variables R-JIP (as reference) 1970–2015

yir Output value in sector ir Sectoral output values 
(JPY)

Prefectural accounts 1970–2015

xir ,js Factors and intermediate 
input values from sector js 
to sector ir

Factors and intermediate 
input values (JPY)

Interregional input‒out-
put table

1970–2005 (every 5y)

x̃ir ,js Factors and intermediate 
input quantities from sec-
tor js to sector ir

Transported or distributed 
quantity (MT)

Distribution census 1970–2015 (every 5y)

pjs Consumer price of factors 
and intermediate input js

Nonservice: value/quan-
tity
Service: CPI

Consumer price index 1970–2015

Table 2 Regional classification

Classification is that used in the interregional input‒output table

id Region Corresponding prefectures

hok Hokkaido Hokkaido

toh Tohoku Aomori, Iwate, Miyagi, Akita, Yamagata, Fukushima

kan Kanto Ibaraki, Tochigi, Gunma, Saitama, Chiba, Tokyo, Kanagawa, 
Niigata, Nagano, Shizuoka

chb Chubu Toyama, Ishikawa, Gifu, Aichi, Mie

kin Kinki Fukui, Shiga, Kyoto, Osaka, Hyogo, Nara, Wakayama

chg Chugoku Tottori, Shimane, Okayama, Hiroshima, Yamaguchi

sik Shikoku Tokushima, Kagawa, Ehime, Kochi

kyu Kyusyu Fukuoka, Saga, Nagasaki, Kumamoto, Oita, Miyazaki, Kagoshima

oki Okinawa Okinawa



Page 13 of 38Ishikawa  Journal of Economic Structures           (2023) 12:22  

Table  3 refers to the industrial classification. It is employed from the Prefectural 
Account and Interregional Input‒Output table and aggregated into 21 sectors since it 
is in the least detailed form than those of the others.

Corresponding to the estimation model, sectoral output yir , factors and inter-
mediate inputs xir,js are extracted from the Prefectural Account and Interregional 
Input‒Output table, respectively, and Hicks-neutral productivity (or factor neutral 
productivity according to Atalay (2017)) At

ir is taken as time dummy variable. How-
ever, publications on the price index on a sectoral basis are limited, so they are cal-
culated following the outline below. For nonservice industries, let us generate a price 
vector by dividing sectoral input values4 by corresponding transported and consumed 
quantities obtained from the Distribution Census. For service industries, since no 
quantity data are available, let us use the corresponding CPI (Consumer Price Index) 
as a proxy.5

• Nonservice industries

ptir =
ytir

ỹtir

, ptjs =
xtir,js

x̃tir,js

,

Hokkaido 

Kanto 

Tohoku 

Chubu 

Kinki 
Shikoku 

Chugoku 

Okinawa 

Kyusyu 

Fig. 2 Regional classification

4 Let us consider the sectors in the Interregional Input‒Output Tables equivalent to the products produced in corre-
sponding industries.
5 Therefore, all price vectors are on a consumption basis.
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where yir is the value of sectoral output in Input–Output table where import is sub-
tracted, and 

(
ỹtir , x̃

t
ir,js

)
 is the quantity of sectoral output and input in Distribution Cen-

sus where export is included.

• Service industries

Although theoretically not incorporated, consumer prices include transportation mar-
gins. Indices such as minimum required time are available for calculating interregional 
and intraregional transportation margins,6 but the present study ignores transportation 
costs to prioritize consistency with the theoretical framework of the network linkage 
model.

4.3  Estimated parameters

This study obtains estimates for each industry and region; thus, N × R parameters are to 
be estimated. For Eq. (10), a least square fixed effects estimator controlling for nonmar-
ket regional factors and time trends is standard. This study employs a fixed effects model 

ptir = CPItir , p
t
js = CPItjs

Table 3 Industrial classification

Classification aggregates the 53 sectors used in the interregional input‒output table

id Industry (abbreviation) Corresponding sectors

1 Agriculture (agr) Agriculture, forestry, fisheries

2 Mining (min) Mining

3 Food processing (fdp) Food processing, beverage, tobacco

4 Textile (tex) Fiber, clothes, other fiber products

5 Paper (pap) Pulp, paper, processed paper, printing, bookbinding, publication

6 Chemistry (chm) Chemical products, synthetic, pharmaceuticals

7 Oil (oil) Oil and coal products, plastic products, rubber products

8 Ceramic (cra) Ceramic

9 Refining (rfn) Steel products, non-ferrous metal products

10 Metal processing (mtp) Metal products

11 Machinery (mch) General machinery, office/service machinery

12 Electrical appliance (ele) Consumer electrical machinery, electronic machinery

13 Vehicles (veh) Automobile, other transportation machinery

14 Precision machinery (prc) Precision machinery

15 Other manufacturing (omn) Lumber products, furniture equipment, other manufacturing 
products

16 Construction (cns) Construction, public utilities

17 Power, gas & water (pgw) Electric power, gas/heat supply, water supply/waste treatment

18 Wholesale & retail (sal) Commerce

19 Finance, insurance & real estate (fir) Finance, insurance, real estate

20 Transportation & communication (trc) Transportation, communication

21 Other services (osr) Education/research, medical/nursing care, personal services, 
business services, public services, other services

6 Ishikura and Ikeda (2018) employ this index.
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to control for the heterogenous effect of different inputs from different regions, with the 
N × R dataset for each output sector as the number of input sectors as a panel. The fre-
quency of observations is every 5 years in the period 1970–2015 (i.e., 10 observations in 
time). However, the least square estimator is highly likely to be biased due to the price 
generated by aforementioned formula. Although the value as numerator is evaluated 
in producer price, the quantity as denominator is distributed amount; 7 thus, the price 
includes demand shocks that cause an endogeneity problem. To remediate this problem, 
let the input and output prices instrumented with three instrumental variables: the Cor-
porate Goods Price Index (CGPI) and Service Producer Price Index (SPPI)8 for input j 
and for output i and macro-TFP for region r . The idea behind these instruments is that 
since the CGPI and SPPI are evaluated at production shipment stage, they should be 
correlated with the generated prices as explanatory variables but should not in any other 
way affect the demand for j th intermediate input by i th producer. In addition, macro-
TFP9 for region r should be uncorrelated with any regional demand trend regardless of 
industry. Theoretically, these instruments affect the expenditure shares as dependent 
variable only through the generated price.

Estimates of θ are shown in Table 4 (extract of Hokkaido. For full table, see Appendix 
Table 8). The choice of a fixed effects estimator with instrumental variables (FE IV) over 
a least square fixed effect estimator (LS FE) depends on the results of post-estimation 
tests. F statistics at the first stage (1st F) are large enough except for the service sectors 
from id 16 to 21. If IVs are weakly correlated with explanatory variables in these sectors, 
it should be attributed to employing CPI which is the only available proxy as sectoral 
price. Overidentification tests (Overidentification) are often rejected in some sectors 
even though IV are excluded when one of them are proved to be unlikely exogenous. 
The model selection is, however, based on Davidson–MacKinnon’s J test comparing fit-
ted values from the two models (Endogeneity). For sectors id 6, 12, 17, 18, 20, 21 in hok; 
3, 13 in toh; 11 in kan; 3, 11 in chb; 8, 11, 18, 19 in kin; 8 in chg; 3, 11, 17 in sik; 3 in kyu; 
and 1, 3, 14, 17 in oki, the test is rejected, and therefore a LS FE estimator is applied 
for later study. For the rest of sectors, a FE IV estimator is employed. In most sectors, 
the estimated θ value by FE IV is larger than that by LS IV. Consequently, the expendi-
ture share of intermediate inputs tends to react elastically to relative price changes and 
productivity shocks including ‘Agriculture’ and ‘Food processing’ sectors. This suggests 
that a positive productivity shock arising in those industries will propagate downstream 
where input demand for agricultural or food products increases elastically. Another 
trend observed in the results is that the estimates of θ vary more across regions among 
the same sectors.

Koike et  al. (2012) and Koike and Naka (2014) are reliable studies to employ for 
comparison and validation of the estimates. However, their results are limited to 

7 For nonservice industries. Since CPI is employed for service industries, the price is purely demand oriented for sectors 
id 16 to 21.
8 Both price indices are provided by Bank of Japan. CGPI is available in 1970–2015 with 2015 price as standard. SPPI is 
available in 1985–2015 with 2015 price as standard, so the samples between 1970 and 1980 are removed.
9 Macro-TFP as well as sectoral TFP is available in 1970–2015 provided by RIETI.
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manufacturing industries, and the models are somewhat different10; their estimates are 
generally between 0.7 and 1. The largest figure observed is ‘Printing (0.96)’ and ‘Trans-
port Machines (0.96)’, while the smallest is ‘Textile (0.61)’. Their estimate for ‘Food and 
Beverage’, equivalent to food processing in this study, is relatively small and elastic at 
0.85.11 Considering that their dataset and process for generating price vectors are gener-
ally the same as those employed in this study, the difference could be attributed to the 
type of model employed, whether it is nested CES or nonnested CES, or the treatment of 
transportation margins in consumer prices. Note that this framework poses some prob-
lems, such as oversimplification by applying a nonnested production function for the 

Table 4 Estimates of elasticity of substitution (Hokkaido)

(1) For sector classification (id), see Tables 2 and 3. Final demand sector (id = 0) is omitted

(2) All variables are taken first difference of log-transformed values in the period 1970–2015 (9 observations every 5 years 
after 1975 for Okinawa, 10 observations every 5 years after 1970 for the rest)

(3) LS FE is a least square fixed effect estimator with panels of input sectors. Standard error is cluster-robust assuming 
heteroskedasticity over input sectors

(4) FE IV is a fixed effect estimator with the instrumental variables: macro-TFP in output region, CGPI of output sector and 
input sectors. Standard error is cluster-robust assuming heteroskedasticity over input sectors. 1st F is the result of F test 
under null hypothesis that coefficients of instrumental variables equal zero (explanatory variables are weakly correlated 
with instruments). Overidentification is the result of Sargan–Hansen test under null hypothesis that all instruments are 
correlated with residuals. Endogeneity is the result of Davidson–MacKinnon’s J test under null hypothesis that an ordinary 
least squares estimator of the same equation (i.e., LS FE) yields consistent estimates

id LS FE IV FE

θ θ − 1 s.e θ θ − 1 s.e 1st F Overidentification Endogeneity

hok 1 0.903 0.075 0.032 0.419 5 1.8 (0.408) 3 (0.077)

2 1.159 0.074 1.709 0.197 200 2.8 (0.244) 15 (0.000)

3 1.161 0.101 2.587 0.668 2 5.4 (0.069) 13 (0.000)

4 0.908 0.021 0.878 0.025 589 38.1 (0.000) 4 (0.037)

5 1.044 0.036 0.495 0.214 18 7.2 (0.007) 10 (0.001)

6 1.039 0.024 1.110 0.067 142 2.4 (0.305) 2 (0.205)

7 0.990 0.016 1.132 0.054 325 3.6 (0.060) 8 (0.004)

8 0.996 0.038 1.398 0.190 35 1.7 (0.187) 8 (0.005)

9 1.030 0.023 1.256 0.092 29 6.2 (0.044) 8 (0.006)

10 1.015 0.021 1.057 0.032 179 0.9 (0.646) 3 (0.076)

11 1.119 0.058 1.578 0.203 90 8.8 (0.012) 6 (0.013)

12 1.102 0.033 1.118 0.045 1176 0.8 (0.678) 0 (0.550)

13 0.909 0.026 1.122 0.075 21 1.0 (0.593) 8 (0.006)

14 0.954 0.019 0.919 0.018 229 3.7 (0.157) 4 (0.047)

15 1.373 0.028 3.339 0.111 185 42.9 (0.000) 1514 (0.000)

16 0.943 0.026 1.543 0.484 1 18.3 (0.000) 3 (0.074)

17 1.058 0.060 0.779 0.309 4 2.8 (0.245) 0 (0.546)

18 1.055 0.034 0.842 0.165 3 2.9 (0.089) 1 (0.227)

19 0.945 0.052 0.215 0.203 21 32.1 (0.000) 9 (0.003)

20 1.025 0.034 1.311 0.258 9 2.3 (0.322) 2 (0.185)

21 1.031 0.037 1.573 0.471 3 0.1 (0.741) 2 (0.144)

11 However, the estimates obtained by Koike and Naka (2014) are generally elastic, similar to those in this study.

10 Koike et al. (2012) present an analysis nearly identical to this study except that they do not control for heterogenous 
effects of different inputs. Koike and Naka (2014) validate the stability of estimates over time by repeating cross-sec-
tional estimation for each year of data.
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sake of theoretical consistency with the network linkage model or ignoring the transpor-
tation margin. As another reference, Nakano and Nishimura (2023) and Atalay (2017) 
estimate sectoral elasticities of substitution in the United States under the two models. 
Where relevant to this study, the former study’s estimates are 1.12 by LS IV and 3.54 
by FE IV for ‘Agriculture’ and 0.55 by LS IV and 1.38 by FE IV for ‘Miscellaneous foods 
and related products’. Despite the similarity of estimates, they target the United States 
and assume the multi-factor CES economy, whereas this study assumes a reduced form 
where an aggregated factor is employed under a nonnested production function.

5  Discussion of the results
The network effect νir is scaled by the elasticity of the input‒output multiplier ξ . The 
input‒output multiplier represents the intensity of the usage of intermediate inputs; 
in other words, it is the complexity and length of the supply chain of the entire econ-
omy. Therefore, in a sector that relies heavily on regional markets for its procurement 
of production factors and intermediate inputs, network effects caused by productivity 
shocks in that sector should propagate differently within and across regions. This can be 
examined by redefining the input‒output multiplier scaled by the regional economy and 
comparing it to the national counterpart. If there are any significant gaps between them, 
then the intensity of propagation toward the local economy is greater or less than that of 
the national economy.

This section, following the concept mentioned above, calculates network effect coef-
ficients in two different ways and compares them to examine the superiority of intrare-
gional network effects among agricultural and food processing industries. Then, if any 
characteristic trends are observed in the distribution of coefficients across industries 
or regions, it provides possible explanations referring to relevant studies and in-depth 
analysis.

5.1  Network effects

In Sect.   3.3, the coefficient of the network effect νir is defined as propagation to the 
national economy, where the input‒output multiplier ξ is the sum of the Domar weights 
�ir scaled by GDP. In brief, this can be interpreted as an average intensity of propagation 
of intraregional and interregional terms. To capture the intraregional term alone, first, 
Hulten’s term for GRP is defined as:

where y0r is GRP, and thus �̂ir is the Domar weight scaled by the size of the regional econ-
omy. With these Domar weights, the input‒output multiplier for regional economies 
and the intraregional term of network effects can be defined as:

(1′)
d logYr
d logAir

= �̂ir where �̂ir ≡
piryir
y0r

(4′)ξr ≡
∑N

i=1
d logYr
d logAi

=
∑N

i=1 �̂ir

(8′)ν̂ir ≡
d logξr
d logAir
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Table  5 shows coefficients νir and ν̂ir calculated by Eqs. (8) and (8)ʹ, respectively. 
Each cross section by row and column is the combination of an industry and region 
struck by a unitary change in Hicks-neutral productivity, and subcolumns adjacent 
to each other represent the direction of propagation, namely, νir on the left and ν̂ir 
on the right. Both coefficients are averages of 10 observations over the period 1970–
2015. The values in parentheses are p values of paired t tests for the significance of 
differences. The results show that the ν̂ir coefficients are significantly larger than νir 
at the 5% level widely among regions for id 1, 9, 18; namely, ‘Agriculture’, ‘Refining’ 
and ‘Wholesale and retail’. Another feature observed in the table is that those coef-
ficients are smaller in agro-food industries than those in the others (i.e., the scale of 
network effects are smaller); however, the coefficient size for the industries varies 
across regions. Consequently, the intraregional term of network effects is greater in 
agro-food sectors; therefore, productivity shocks propagate more intensively toward 
the regional economy.

Possible explanations for this are primarily that these industries procure their inter-
mediate goods mostly from suppliers located in the same region (this is to be con-
firmed by the visualization of network structure in Sect.  5.3). For a typical application 
of this hypothesis, ‘Food processing’ industries might demand local agricultural prod-
ucts for as intermediates to reduce transportation cost or as a part of location strat-
egy. Similarly, downstream producers of ‘Refining’ might input iron and non-ferrous 
metal products in the geographically agglomerated heavy industry area. On the con-
trarily, any shocks in ‘Wholesale and retail’ sector should propagate upstream, and 
for those regions where distribution channels come locally, network effects should 
be intraregional. From another perspective, Ishikura and Ikeda (2018), who employ 
Dixit–Stiglitz functions to formulate diversified preferences, contend that higher 

Table 5 Estimates of network effect coefficients

id hok toh kan chb kin chg sik kyu oki

1
0.0214 0.0517 0.0008 0.0016 0.0019 0.0048 0.0011 0.0035 0.0015 0.0049 0.0013 0.0042 0.0007 0.0020 0.0007 0.0020 0.0004 0.0010

(0.001) (0.141) (0.000) (0.002) (0.003) (0.003) (0.005) (0.019) (0.024)

2
0.0077 0.0137 0.0112 0.0166 0.0064 -0.0001 -0.0033 -0.0043 0.0032 0.0053 0.0010 0.0023 0.0122 0.0203 0.0120 0.0217 -0.0012 -0.0022

(0.941) (0.177) (0.361) (0.516) (0.093) (0.671) (0.038) (0.200) (0.275)

3
-0.0144 -0.0549 0.0007 0.0011 0.0021 0.0015 0.0000 -0.0002 0.0007 0.0013 0.0004 0.0008 0.0001 0.0000 0.0001 0.0000 0.0000 -0.0002

(0.001) (0.403) (0.246) (0.441) (0.158) (0.011) (0.415) (0.476) (0.020)

4
-0.0004 -0.0020 0.0003 0.0003 0.0005 0.0006 0.0005 0.0004 0.0005 0.0006 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0000 0.0000

(0.232) (0.827) (0.784) (0.661) (0.850) (0.582) (0.082) (0.054) (0.672)

5
0.0482 0.0767 0.0015 0.0021 0.0026 0.0026 0.0006 0.0007 0.0009 0.0012 0.0003 0.0005 0.0004 0.0008 0.0003 0.0003 0.0000 0.0000

(0.029) (0.266) (0.917) (0.440) (0.351) (0.199) (0.061) (0.577) (0.894)

6
0.1008 0.1796 0.0050 0.0080 0.0040 0.0098 0.0031 0.0047 0.0031 0.0060 0.0065 0.0107 0.0016 0.0026 0.0013 0.0021 0.0002 0.0003

(0.006) (0.015) (0.157) (0.189) (0.032) (0.022) (0.056) (0.266) (0.408)

7
0.0901 -0.0121 0.0015 0.0017 -0.0221 -0.0282 -0.0089 -0.0114 0.0044 0.0093 -0.0029 -0.0030 0.0026 0.0086 0.0016 0.0067 -0.0012 -0.0022

(0.656) (0.942) (0.543) (0.500) (0.233) (0.980) (0.257) (0.477) (0.313)

8
-0.1060 -0.2090 -0.0047 -0.0110 -0.0122 -0.0198 0.0012 0.0008 -0.0146 -0.0162 -0.0032 -0.0037 -0.0006 -0.0010 -0.0031 -0.0056 -0.0055 -0.0094

(0.381) (0.205) (0.171) (0.701) (0.340) (0.821) (0.585) (0.325) (0.381)

9
3.1435 5.0133 0.0983 0.1510 0.1411 0.2415 0.0630 0.0990 0.1157 0.1573 0.0833 0.1257 0.0329 0.0547 0.0534 0.0888 0.0100 0.0140

(0.000) (0.005) (0.000) (0.002) (0.000) (0.000) (0.002) (0.004) (0.364)

10
-0.0048 -0.0078 -0.0005 -0.0008 -0.0013 -0.0025 -0.0012 -0.0022 -0.0012 -0.0019 0.0002 0.0002 0.0000 0.0001 -0.0001 -0.0001 -0.0001 -0.0002

(0.084) (0.175) (0.282) (0.239) (0.359) (0.957) (0.283) (0.628) (0.357)

11
0.0071 0.0103 0.0000 -0.0001 -0.0007 -0.0011 0.0000 0.0000 0.0002 0.0004 0.0010 0.0014 0.0002 0.0003 0.0001 0.0002 0.0000 0.0000

(0.305) (0.828) (0.257) (0.930) (0.683) (0.222) (0.120) (0.395) (0.937)

12
-0.0041 -0.0055 -0.0009 -0.0014 -0.0024 -0.0041 -0.0005 -0.0006 -0.0003 -0.0007 -0.0005 -0.0007 0.0001 0.0001 -0.0001 -0.0001 -0.0001 -0.0001

(0.591) (0.239) (0.113) (0.481) (0.132) (0.318) (0.216) (0.696) (0.193)

13
0.0004 -0.0004 0.0001 0.0003 -0.0009 -0.0018 0.0001 0.0001 0.0003 0.0005 0.0000 0.0002 0.0006 0.0011 0.0002 0.0004 -0.0001 -0.0003

(0.718) (0.677) (0.113) (0.962) (0.026) (0.441) (0.125) (0.292) (0.304)

14
-0.0005 -0.0008 -0.0001 -0.0001 -0.0002 -0.0003 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000

(0.346) (0.624) (0.457) (0.541) (0.871) (0.748) (0.223) (0.178) (0.443)

15
0.0286 0.0224 0.0010 0.0016 0.0168 0.0228 0.0003 0.0008 0.0011 0.0018 -0.0006 -0.0004 -0.0002 -0.0002 0.0000 0.0001 -0.0001 -0.0002

(0.271) (0.412) (0.060) (0.343) (0.230) (0.441) (0.967) (0.862) (0.250)

16
-0.1151 -0.1939 -0.0049 -0.0091 -0.0070 -0.0103 -0.0008 -0.0010 -0.0021 -0.0022 -0.0014 -0.0019 0.0000 -0.0002 -0.0007 -0.0009 -0.0034 -0.0058

(0.063) (0.222) (0.152) (0.473) (0.950) (0.159) (0.547) (0.456) (0.345)

17
-1.3107 -1.9181 -0.1119 -0.1550 -0.0689 -0.1028 -0.0229 -0.0339 -0.0119 -0.0206 -0.0281 -0.0415 -0.0029 -0.0054 -0.0069 -0.0097 -0.0010 -0.0016

(0.003) (0.055) (0.140) (0.116) (0.134) (0.045) (0.106) (0.223) (0.188)

18
0.0330 0.0480 0.0029 0.0043 0.0170 0.0253 0.0050 0.0071 0.0072 0.0106 0.0025 0.0038 0.0014 0.0023 0.0023 0.0038 -0.0001 -0.0002

(0.019) (0.054) (0.013) (0.034) (0.003) (0.001) (0.003) (0.004) (0.642)

19
0.0009 0.0006 -0.0015 -0.0019 0.0063 0.0079 0.0007 0.0010 0.0028 0.0040 0.0008 0.0014 0.0018 0.0030 0.0019 0.0034 -0.0004 -0.0007

(0.942) (0.595) (0.389) (0.406) (0.017) (0.098) (0.014) (0.042) (0.422)

20
0.0290 0.0290 0.0003 0.0004 -0.0003 -0.0002 0.0018 0.0025 0.0027 0.0037 0.0017 0.0026 0.0014 0.0025 0.0018 0.0030 -0.0003 -0.0006

(0.996) (0.953) (0.965) (0.232) (0.151) (0.070) (0.002) (0.044) (0.489)

21
-0.0264 -0.0369 -0.0038 -0.0051 -0.0016 0.0008 0.0007 0.0013 0.0034 0.0054 0.0003 0.0009 0.0017 0.0029 0.0021 0.0041 -0.0001 -0.0003

(0.420) (0.351) (0.529) (0.519) (0.019) (0.433) (0.013) (0.114) (0.703)

The intersection of a row (industries) and column (region) indicates the origin of a unitary productivity shock. The left 
subcolumn represents the total network effect, while the right subcolumn presents the intraregional term. Each figure is a 
10-year average in the period 1970–2015. Figures in parentheses are p values of paired t tests between the left group and 
right group (10 observations, 9 for Okinawa)
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elasticities can be observed under monopolistic competition. In this sense, diversified 
preferences across regions might encourage processed food products to be distrib-
uted more in the local market.

Network effects are one of the secondary impacts of endogenous changes in industrial 
structures. Given a positive productivity shock in a sector, some industries downstream 
adopt its technology to use the product more intensively;12 as a result, the sector’s 
Domar weight in the regional economy will increase. In contrast, assuming a negative 
productivity shock in the same sector, its customers will switch suppliers to those in 
other regions, which decreases the sector’s Domar weight.

5.2  Sensitivity analysis

The elasticity of substitution is a crucial parameter, as mentioned above. If it is too 
close to 1, the scale of network effects is suppressed such that no significant difference 
between ν̂ir and νir can be detected in some instances (although variations in other 
subparameters might offset it). As an extreme case where θ converges to one, the pro-
duction function becomes Cobb‒Douglas, and the impact of second-order terms is 
strictly zero regardless of the other subparameters. In fact, not all θ estimates used to 
calculate the outcome of Eq. (7) are significantly different from 1. In this section, for 
the sectors where the difference is observed in Table  5, a sensitivity analysis is con-
ducted on the network effects while varying the elasticity of substitution.

Appendix Figs. 6, 7, 8, 9, 10, 11, 12, and 13 plot the difference between the two types 
of network effects, allowing θ to vary under interval estimation: one in the 68% CI and 
the other in the 98% CI. The results show that if θ is included in the 68% CI, the order of 
magnitude of the estimates will be preserved, and there is a difference between them in 
every sector. Even when the estimate varies across the 98% CI, it is certain that the dif-
ference is still recognizable if the estimates do not take extreme values. Therefore, it is 
reasonable to say that the superiority of intraregional network effects among agricultural 
sectors is robust.

5.3  Comparison to industrial structures

Let us interpret the estimated coefficients above by comparison with the industrial 
structure in this section. First, as mentioned in Sect. 5.1, the scale of network effects in 
agricultural and food processing industries differ across regions. Since the coefficients 
are determined by three subparameters introduced in Sect. 3.3, at least one of these is 
generating such differences. As shown in Table 6, the regional Domar weights (sectoral 
outputs divided by regional domestic products) in Hokkaido, Tohoku and Kyusyu are 
significantly high; indeed, the νir and ν̂ir coefficients in these regions are 2–8 times as 
large as those in the others. Thus, the Domar weight might be the most crucial factor 
that causes the regional gaps.

Among the subparameters, the input‒output covariance’s role is also important 
since it captures the substitutive/complementarity relation in an arbitrary pair of 

12 It is the consequence of second-order term as Eq.  (7) implies. The more substitutable the product is to the other 
inputs, the greater input–output covariance between these inputs will be since downstream industries change technol-
ogy over time. In contrast, if the product is rather complementary to the other inputs, input–output covariance will have 
a limited impact for this sake. Besides, elasticity of substitution and Domar weight decide the scale of this impact as well.
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Table 6 Domar weights in steady state (2005)

id hok toh kan chb kin chg sik kyu oki

1 0.079 0.047 0.013 0.014 0.008 0.021 0.045 0.048 0.029

2 0.005 0.003 0.002 0.001 0.000 0.001 0.003 0.002 0.002

3 0.114 0.064 0.063 0.050 0.064 0.055 0.062 0.090 0.053

4 0.002 0.006 0.004 0.014 0.014 0.017 0.018 0.005 0.001

5 0.021 0.015 0.011 0.012 0.011 0.012 0.053 0.007 0.001

6 0.011 0.026 0.056 0.052 0.069 0.107 0.079 0.032 0.003

7 0.068 0.019 0.025 0.025 0.032 0.101 0.097 0.016 0.065

8 0.009 0.015 0.009 0.021 0.014 0.018 0.013 0.017 0.013

9 0.029 0.035 0.035 0.066 0.061 0.117 0.075 0.049 0.006

10 0.012 0.019 0.021 0.040 0.035 0.023 0.018 0.018 0.010

11 0.009 0.047 0.063 0.098 0.088 0.074 0.055 0.037 0.001

12 0.007 0.055 0.054 0.053 0.061 0.033 0.031 0.028 0.001

13 0.018 0.046 0.077 0.316 0.046 0.134 0.045 0.089 0.000

14 0.010 0.044 0.017 0.045 0.023 0.037 0.007 0.037 0.000

15 0.024 0.045 0.051 0.080 0.062 0.067 0.035 0.039 0.009

16 0.136 0.172 0.106 0.092 0.097 0.097 0.103 0.110 0.163

17 0.060 0.063 0.059 0.063 0.063 0.067 0.062 0.059 0.069

18 0.213 0.155 0.247 0.167 0.212 0.163 0.162 0.180 0.163

19 0.195 0.178 0.262 0.168 0.218 0.176 0.186 0.175 0.205

20 0.180 0.121 0.222 0.135 0.171 0.138 0.137 0.164 0.234

21 0.511 0.428 0.450 0.336 0.413 0.397 0.430 0.444 0.611

Fig. 3 Interregional network in agriculture and food processing (in Steady State, 2005). Visualization 
based on the input coefficients matrix of the Interregional Input‒Output table 2005. The thickness of 
edges corresponds to the scale of input coefficients (thick if ω ≥ 0.05; moderate if 0.03 ≤ ω < 0.05; thin if 
0.01 ≤ ω < 0.03; or omitted if ω < 0.01). Green nodes denote agriculture (a_), yellow nodes represent food 
processing (f_)
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sectors, in other words, directions of propagation. Figure  3 visualizes input‒output 
networks between agriculture and food processing across different regions. With 
nodes corresponding to each sector and edges that indicate the scale and direction 
of input coefficients in Input–Output tables, the industrial position in the network 
is unique to each sector. Agricultural sectors (indicated by a_) supply their products 
mainly to their own region’s food processing industry (f_); however, Tohoku (toh), 
Chugoku (chb) and Kyusyu (kyu) have relations with food processing industries in 
other regions. In the network, the food processing industries in Kanto (kan) and 
Kyusyu (kyu) are centered, which suggests being supplied by the most sectors. Since 
such sectors in input‒output relations with multiple sectors can be stimulated by 
multiple shocks, the scale of network effects tends to be maximized (but the scale of 
intraregional networks depends on the complexity and length of the shocked sector’s 
supply chain within the region).

By introducing a detailed industrial classification, it will be possible to conduct an 
in-depth study of the substitutive/complementary relations between industries and 
regions. Figure 4 visualizes a detailed input‒output network with 7 agricultural and 
10 food-processing subsectors in the Hokkaido region, 2005. Among the network 
described in the figure, there are 9 edges with intensities of ω ≥ 1 (as thick lines indi-
cate) and 0.05 ≤ ω < 0.1 (as indicated by moderately thick lines): ‘rice to rice milling’, 
‘wheat and barley to flour milling’, ‘flour milling to noodles, bread and confectionary’, 

Fig. 4 Detailed network in agriculture and food processing (in Steady State, Hokkaido, 2005). Visualization 
based on the input coefficients matrix of the Interregional Input‒Output Table 2005. The thickness of 
edges corresponds to the scale of input coefficients (thick if ω ≥ 0.05; moderate if 0.03 ≤ ω < 0.05; thin 
if 0.01 ≤ ω < 0.03; or omitted if ω < 0.01). Darker color of nodes indicates higher intensity of self-input. 
Agriculture is classified as rice (ric), wheat and barley (wht), other crops (ocr), feeding crops (fed), dairy 
farming (dai), livestock (liv), and fisheries (fis). Food processing is classified as follows: slaughter (slt), meat 
products (mtp), dairy products (dap), processed marine products (pmp), rice milling (rml), flour milling (fml), 
noodles bread confectionary (nbc), other processed products (opp), prepared food products (pfp), and 
tobacco alcohol tea (tab)
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‘feeding crops to dairy farming’, ‘dairy farming to dairy products’, ‘feeding crops to 
livestock’, ‘livestock to slaughter’, ‘slaughter to meat products’ and ‘fishery to prepared 
marine products’. Supplementarily, Appendix Figs. 14, 15, 16, 17, 18, 19, 20, and 21 
describe each edge in interregional networks. Each trade in the sector pairs above is 
most significant within the same region; however, some goods are traded interregion-
ally at a considerable value. For example, in ‘rice to rice milling (Appendix Fig. 14)’, 
rice farming in Tohoku and Kanto supplies a few other regions’ rice milling indus-
tries, which is why they occupy the central positions in the network. In addition, 
self-centered regions include Hokkaido in ‘wheat and barley to flour milling (Appen-
dix Fig.  15)’, Kanto in ‘flour milling to noodles, bread and confectionary (Appendix 
Fig. 16)’ and Kyusyu in dairy- and livestock-related industries (Appendix Figs. 17, 18, 
19 and 20). Although traded values partly determine the scale of network effects, it 
is confirmed that wider input‒output networks across regions enhance the region’s 
network effect.

How can the superiority of the intraregional network be explained in this context? 
As noted in Sect.  5.1, the primary reason is a greater share of intermediate goods 
and factor from the own region within and between agricultural and food process-
ing industries. This can be verified with the detailed industrial classification. Table 7 
shows the rates of input values into the own region divided by the total input and 
output values of the 9 trades introduced above. The rate weighted by total input val-
ues describes how much of the products are allocated to the own region’s intermedi-
ate market, while the other weighted by total output values are the self-sufficiency 

Fig. 5 Entire Regional Input‒Output Network (in Steady State, Hokkaido, 2005). Visualization based on the 
input coefficients matrix of the interregional Input‒Output Table 2005. The thickness of edges corresponds 
to the scale of input coefficients (thick if ω ≥ 0.05; moderate if 0.03 ≤ ω < 0.05; thin if 0.01 ≤ ω < 0.03; or 
omitted if ω < 0.01). Darker color of nodes indicates higher intensity of self-input. Industries are described in 
abbreviation in Table 3
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rates of the intermediate demands. Overall, except for a few regions, more than 60% 
of intermediate goods in these agro-food industries are allocated within regions. 
The rates in the industrial clusters related to dairy and livestock are especially high, 
which indicates the straight value chain within the region from feed production to 
raising and processing. These transactions are included in the same local industrial 
cluster and considering the significance of dairy and livestock sectors in Japan’s agro-
food economy, such a form explains much of the superiority of the intraregional net-
work.13 In future studies, empirical analysis is needed to examine the extent of the 
difference in the network effects between regional allocation and interregional trade.

Finally, let us compare the network effects in the agro-food sectors with those of 
the others. The coefficients in these sectors are relatively smaller than those in other 
manufacturing and service industries since the sectors are peripheral in the overall 
economy and propagations from other industries are quite limited. Figure  5 shows 
Hokkaido’s entire input‒output network in 2005. According to this, the products 
of ‘Agriculture (agr)’ are supplied exclusively to ‘Food processing (fdp)’ and then to 

Table 7 Rates for interregional transactions (2005)

Interregional input‒output table 2005

The left subcolumn reports input values supplied to the own region weighted by total allocated value. The right subcolumn 
reports input values weighted by total output value (or self-sufficient rate of intermediate demand)

id ric—rml wht—fml fml—nbc fis—pmp

Input Output Input Output Input Output Input Output

hok 0.495 0.556 0.122 0.941 0.809 0.816 0.852 0.865

toh 0.452 0.817 0.717 0.691 0.675 0.172 0.771 0.646

kan 0.802 0.733 0.975 0.658 0.822 0.937 0.774 0.537

chb 0.730 0.648 0.964 0.684 0.767 0.731 0.654 0.542

kin 0.844 0.482 1.000 0.613 0.841 0.824 0.709 0.584

chg 0.814 0.862 0.972 0.633 0.743 0.490 0.354 0.332

sik 0.699 0.657 0.822 0.667 0.600 0.575 0.178 0.513

kyu 0.907 0.787 0.669 0.912 0.659 0.795 0.666 0.890

oki 1.000 0.046 1.000 0.985 1.000 0.651 0.095 0.521

id fed—dai dai—dap fed—liv liv—slt slt – mtp

Input Output Input Output Input Output Input Output Input Output

hok 0.997 0.968 0.507 0.980 0.971 0.966 0.697 0.834 0.441 0.753

toh 0.970 0.938 0.445 0.751 0.983 0.935 0.760 0.973 0.687 0.948

kan 0.891 0.930 0.951 0.548 0.938 0.929 0.939 0.816 0.961 0.758

chb 0.786 0.945 0.917 0.646 0.829 0.942 0.834 0.745 0.880 0.697

kin 0.801 0.753 0.524 0.175 0.765 0.748 0.868 0.409 0.945 0.625

chg 0.610 0.771 0.752 0.739 0.547 0.770 0.704 0.905 0.770 0.638

sik 0.983 0.638 0.593 0.922 0.981 0.639 0.883 0.877 0.800 0.905

kyu 0.917 0.905 0.610 0.757 0.930 0.905 0.913 0.969 0.500 0.978

oki 1.000 0.546 0.980 0.982 0.997 0.546 0.895 0.997 1.000 0.889

13 Estimation with the detailed classification would provide empirical evidence of this, but the classification is only avail-
able for the I-O table in 2005. Even if available, other data corresponding to the classification would be insufficient to 
obtain time-invariant estimates of elasticities of substitution. Therefore, the detailed I-O data are for supplemental use in 
this study.
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‘Wholesale and retail (sal)’. In contrast, the central sectors such as ‘Wholesale and 
retail’, ‘Power, gas and water (pgw)’ and ‘Transportation and communication (trc)’ are 
supplied from almost all other industries directly or indirectly; therefore, productiv-
ity shocks in most industries can influence these sectors. In fact, the scales of the net-
work effect in those sectors are significantly higher than those in the rest. Although 
this study focused on agro-food industries alone, shocks arising in these industries 
will propagate to the central sectors through the distribution and transport of fresh 
and processed food products, which might make considerable contributions to the 
region’s macroeconomy. Future research should identify and numerically evaluate 
indirect propagation to such related industries.

6  Conclusions
This study provided asymmetric input‒output network linkages in agricultural and 
food industries across nine domestic regions, modified the generalized network link-
age model such that the interregional input‒output structure is incorporated, and 
empirically examined the direction of the propagation of agro-food sectoral shocks 
in regional outcomes. The generalized network linkage model incorporates an endog-
enous change in industrial structure as a nonlinear approximation of Hulten’s theo-
rem; as a part of this effect, changes in intermediate demand for the entire economy 
generated by productivity shocks are defined as network effects. To evaluate these 
effects, elasticities of substitution between intermediate inputs across regions are 
empirically estimated. By comparing the network effects on the national economy 
and regional economy, the superiority of intraregional networks among agro-food 
sectors is empirically verified, which means that productivity shocks arising in these 
industries propagate more within the own region. This is due to intraregional indus-
trial clusters and heterogeneity of products in the industry.

These findings offer the following implications. First, positive network effects in 
agricultural and food processing industries provide surplus value added in regional 
(and national) macroeconomies when positive productivity shocks arise in these 
industries. This means that the intermediate demand expands around the stimulated 
industries, and regional output grows more than the multiplier generated by Hulten’s 
theory. The scale of network effects depends on the intensity of the input‒output net-
work upstream and downstream; especially for its interregional term, propagation is 
more intensive if the supply chain extends across regions. As a result, even if produc-
tivity shocks are common across regions, the intraregional term of network effects 
will cause deviations in each region’s economic growth in the long term. Since the 
shock itself is unbalanced across regions in reality, it might be the source of the dis-
parity in the performance of the agro-food economy.

7  Appendix
See Table 8 and Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21.
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Table 8 Estimates of elasticity of substitution

id LS FE IV FE

θ θ − 1 s.e θ θ − 1 s.e 1st F Overidentification Endogeneity

hok 1 0.903 0.075 0.032 0.419 5 1.8 (0.408) 3 (0.077)

2 1.159 0.074 1.709 0.197 200 2.8 (0.244) 15 (0.000)

3 1.161 0.101 2.587 0.668 2 5.4 (0.069) 13 (0.000)

4 0.908 0.021 0.878 0.025 589 38.1 (0.000) 4 (0.037)

5 1.044 0.036 0.495 0.214 18 7.2 (0.007) 10 (0.001)

6 1.039 0.024 1.110 0.067 142 2.4 (0.305) 2 (0.205)

7 0.990 0.016 1.132 0.054 325 3.6 (0.060) 8 (0.004)

8 0.996 0.038 1.398 0.190 35 1.7 (0.187) 8 (0.005)

9 1.030 0.023 1.256 0.092 29 6.2 (0.044) 8 (0.006)

10 1.015 0.021 1.057 0.032 179 0.9 (0.646) 3 (0.076)

11 1.119 0.058 1.578 0.203 90 8.8 (0.012) 6 (0.013)

12 1.102 0.033 1.118 0.045 1176 0.8 (0.678) 0 (0.550)

13 0.909 0.026 1.122 0.075 21 1.0 (0.593) 8 (0.006)

14 0.954 0.019 0.919 0.018 229 3.7 (0.157) 4 (0.047)

15 1.373 0.028 3.339 0.111 185 42.9 (0.000) 1514 (0.000)

16 0.943 0.026 1.543 0.484 1 18.3 (0.000) 3 (0.074)

17 1.058 0.060 0.779 0.309 4 2.8 (0.245) 0 (0.546)

18 1.055 0.034 0.842 0.165 3 2.9 (0.089) 1 (0.227)

19 0.945 0.052 0.215 0.203 21 32.1 (0.000) 9 (0.003)

20 1.025 0.034 1.311 0.258 9 2.3 (0.322) 2 (0.185)

21 1.031 0.037 1.573 0.471 3 0.1 (0.741) 2 (0.144)

toh 1 0.907 0.134 3.160 3.559 1 0.2 (0.672) 3 (0.070)

2 1.078 0.076 1.455 0.154 214 19.4 (0.000) 10 (0.002)

3 1.312 0.135 0.961 0.176 14 17.2 (0.000) 2 (0.170)

4 0.867 0.016 0.699 0.018 1204 31.8 (0.000) 169 (0.000)

5 1.041 0.042 0.155 0.232 19 15.4 (0.000) 17 (0.000)

6 0.919 0.026 0.541 0.055 114 55.0 (0.000) 74 (0.000)

7 1.078 0.018 1.226 0.051 127 48.5 (0.000) 9 (0.003)

8 1.154 0.027 1.503 0.064 66 88.1 (0.000) 58 (0.000)

9 1.097 0.039 2.872 0.709 3 16.1 (0.000) 62 (0.000)

10 1.196 0.022 1.514 0.040 74 65.7 (0.000) 136 (0.000)

11 1.207 0.046 3.638 0.494 39 7.3 (0.026) 460 (0.000)

12 0.831 0.037 0.584 0.052 674 6.0 (0.050) 54 (0.000)

13 1.103 0.115 0.571 0.223 12 0.5 (0.764) 2 (0.122)

14 0.972 0.031 0.863 0.033 222 8.7 (0.013) 20 (0.000)

15 1.392 0.032 3.328 0.102 182 73.1 (0.000) 818 (0.000)

16 0.958 0.042 1.618 0.314 2 43.5 (0.000) 7 (0.011)

17 0.992 0.067 −1.857 0.994 5 3.9 (0.145) 23 (0.000)

18 1.091 0.038 3.674 0.739 7 7.7 (0.021) 207 (0.000)

19 0.992 0.064 5.825 2.089 4 0.3 (0.597) 94 (0.000)

20 1.042 0.033 3.638 3.172 0 18.3 (0.000) 10 (0.002)

21 1.023 0.046 4.198 1.314 4 0.0 (0.905) 67 (0.000)
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Table 8 (continued)

id LS FE IV FE

θ θ − 1 s.e θ θ − 1 s.e 1st F Overidentification Endogeneity

kan 1 1.070 0.108 0.426 0.194 13 14.8 (0.001) 12 (0.001)

2 1.253 0.063 1.583 0.110 336 2.6 (0.269) 31 (0.000)

3 1.233 0.071 0.475 0.313 4 11.9 (0.003) 8 (0.005)

4 0.783 0.019 0.705 0.016 1338 53.1 (0.000) 68 (0.000)

5 0.965 0.025 0.748 0.085 11 41.0 (0.000) 5 (0.033)

6 0.990 0.027 0.359 0.118 33 72.2 (0.000) 78 (0.000)

7 0.946 0.019 1.364 0.076 58 32.2 (0.000) 29 (0.000)

8 1.031 0.019 1.152 0.084 30 1.1 (0.302) 3 (0.069)

9 1.024 0.021 0.637 0.091 14 134.0 (0.000) 18 (0.000)

10 1.009 0.024 1.068 0.029 56 3.7 (0.053) 4 (0.055)

11 1.128 0.026 1.325 0.153 10 5.8 (0.056) 2 (0.193)

12 0.982 0.031 0.551 0.077 205 3.3 (0.191) 78 (0.000)

13 0.985 0.051 0.845 0.061 86 1.7 (0.431) 9 (0.003)

14 1.004 0.010 1.390 0.073 158 3.9 (0.048) 43 (0.000)

15 1.396 0.025 3.294 0.086 249 63.5 (0.000) 1500 (0.000)

16 1.015 0.039 1.527 0.198 5 44.6 (0.000) 14 (0.000)

17 1.005 0.053 0.135 0.456 4 33.8 (0.000) 11 (0.001)

18 1.065 0.036 2.247 0.430 5 25.0 (0.000) 53 (0.000)

19 0.990 0.045 −0.697 0.599 5 57.3 (0.000) 45 (0.000)

20 1.046 0.038 2.027 0.464 4 12.5 (0.002) 16 (0.000)

21 1.024 0.032 1.302 0.178 14 15.7 (0.000) 6 (0.018)

chb 1 1.386 0.112 4.568 1.638 2 1.3 (0.533) 21 (0.000)

2 1.202 0.049 1.552 0.088 292 2.4 (0.308) 46 (0.000)

3 1.346 0.129 0.286 0.511 3 11.0 (0.004) 2 (0.157)

4 0.750 0.024 0.630 0.019 728 19.3 (0.000) 76 (0.000)

5 1.019 0.024 1.314 0.077 13 10.2 (0.006) 15 (0.000)

6 1.001 0.018 0.788 0.052 65 18.5 (0.000) 20 (0.000)

7 1.120 0.027 1.202 0.026 116 69.9 (0.000) 13 (0.000)

8 1.063 0.022 1.361 0.071 17 10.0 (0.007) 32 (0.000)

9 1.194 0.040 2.307 0.241 15 2.0 (0.374) 181 (0.000)

10 1.049 0.022 1.269 0.042 30 5.6 (0.060) 32 (0.000)

11 1.091 0.028 1.155 0.297 2 39.4 (0.000) 0 (0.809)

12 0.986 0.025 0.836 0.052 652 29.8 (0.000) 23 (0.000)

13 0.992 0.034 1.484 0.280 19 6.8 (0.009) 4 (0.058)

14 0.953 0.009 0.980 0.026 411 8.5 (0.014) 3 (0.076)

15 1.352 0.029 3.120 0.079 297 19.0 (0.000) 3465 (0.000)

16 1.062 0.036 2.187 0.451 3 32.6 (0.000) 35 (0.000)

17 1.105 0.069 2.667 0.494 7 6.4 (0.042) 18 (0.000)

18 1.039 0.039 0.687 0.142 5 26.3 (0.000) 5 (0.032)

19 0.998 0.040 0.345 0.237 9 21.8 (0.000) 11 (0.001)

20 0.963 0.046 −2.265 1.089 5 0.8 (0.373) 115 (0.000)

21 1.032 0.042 2.291 0.384 10 18.2 (0.000) 30 (0.000)
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Table 8 (continued)

id LS FE IV FE

θ θ − 1 s.e θ θ − 1 s.e 1st F Overidentification Endogeneity

kin 1 1.271 0.085 2.345 0.432 3 9.2 (0.010) 8 (0.006)

2 1.269 0.054 1.455 0.092 348 5.4 (0.068) 11 (0.001)

3 1.375 0.133 0.127 0.573 4 3.6 (0.059) 3 (0.066)

4 0.831 0.033 0.747 0.029 642 35.3 (0.000) 16 (0.000)

5 1.052 0.021 1.186 0.054 21 22.1 (0.000) 5 (0.021)

6 1.008 0.022 0.619 0.079 31 13.0 (0.002) 51 (0.000)

7 1.055 0.023 1.131 0.018 208 73.0 (0.000) 22 (0.000)

8 0.978 0.026 0.928 0.127 8 0.9 (0.641) 0 (0.690)

9 0.795 0.027 0.234 0.112 28 74.1 (0.000) 61 (0.000)

10 0.945 0.022 0.788 0.040 43 23.1 (0.000) 23 (0.000)

11 1.071 0.021 1.101 0.110 42 0.6 (0.732) 0 (0.818)

12 1.027 0.028 0.736 0.069 266 8.0 (0.019) 33 (0.000)

13 0.970 0.068 0.814 0.054 64 4.0 (0.139) 12 (0.001)

14 1.015 0.011 0.964 0.024 201 9.9 (0.007) 12 (0.001)

15 1.379 0.023 3.000 0.081 211 173.8 (0.000) 1174 (0.000)

16 1.003 0.021 1.611 0.382 2 5.8 (0.016) 12 (0.001)

17 1.056 0.060 2.344 0.373 8 15.9 (0.000) 15 (0.000)

18 1.054 0.038 1.334 0.265 5 19.0 (0.000) 1 (0.277)

19 0.983 0.045 0.701 1.488 1 19.3 (0.000) 0 (0.796)

20 1.034 0.040 −0.460 0.481 6 16.1 (0.000) 59 (0.000)

21 1.004 0.048 1.546 0.277 8 52.8 (0.000) 5 (0.027)

chg 1 1.296 0.137 6.802 2.161 5 2.5 (0.284) 94 (0.000)

2 1.116 0.047 1.426 0.079 279 3.5 (0.174) 17 (0.000)

3 1.466 0.145 3.577 1.236 2 0.1 (0.808) 5 (0.024)

4 0.878 0.019 0.712 0.019 867 39.9 (0.000) 167 (0.000)

5 0.913 0.020 0.811 0.030 111 21.2 (0.000) 30 (0.000)

6 0.942 0.030 0.583 0.128 19 58.8 (0.000) 14 (0.000)

7 1.064 0.018 1.099 0.026 210 12.3 (0.002) 4 (0.050)

8 1.050 0.031 0.890 0.120 61 26.1 (0.000) 2 (0.145)

9 0.991 0.021 0.745 0.047 41 114.9 (0.000) 20 (0.000)

10 0.959 0.027 0.873 0.039 58 6.9 (0.009) 4 (0.036)

11 0.973 0.028 0.612 0.151 30 32.9 (0.000) 5 (0.022)

12 1.044 0.028 0.946 0.046 730 42.4 (0.000) 10 (0.002)

13 1.017 0.045 0.932 0.071 188 23.2 (0.000) 3 (0.084)

14 1.033 0.012 1.081 0.030 292 4.1 (0.126) 6 (0.019)

15 1.411 0.033 1.741 0.046 176 182.8 (0.000) 63 (0.000)

16 0.980 0.031 −0.048 0.552 2 11.3 (0.001) 19 (0.000)

17 1.046 0.087 −0.121 0.459 8 1.9 (0.396) 9 (0.003)

18 1.020 0.049 −0.349 1.086 1 0.1 (0.754) 6 (0.017)

19 0.934 0.047 0.197 0.363 9 0.3 (0.616) 10 (0.002)

20 0.989 0.037 −0.058 0.428 6 0.1 (0.814) 18 (0.000)

21 1.002 0.034 2.756 1.317 1 4.4 (0.037) 9 (0.003)



Page 28 of 38Ishikawa  Journal of Economic Structures           (2023) 12:22 

Table 8 (continued)

id LS FE IV FE

θ θ − 1 s.e θ θ − 1 s.e 1st F Overidentification Endogeneity

sik 1 1.175 0.106 2.866 0.636 15 4.3 (0.115) 21 (0.000)

2 1.010 0.058 2.295 0.593 6 3.7 (0.054) 11 (0.001)

3 1.428 0.167 2.138 0.460 6 1.2 (0.272) 2 (0.128)

4 0.784 0.022 0.588 0.020 642 54.7 (0.000) 332 (0.000)

5 1.010 0.038 0.518 0.179 10 24.6 (0.000) 8 (0.006)

6 0.852 0.032 0.584 0.046 155 5.8 (0.056) 47 (0.000)

7 0.974 0.015 1.639 0.208 51 1.2 (0.271) 14 (0.000)

8 1.064 0.016 1.232 0.059 148 2.3 (0.320) 14 (0.000)

9 0.789 0.042 0.543 0.052 504 58.0 (0.000) 38 (0.000)

10 0.664 0.050 0.256 0.100 85 6.0 (0.049) 28 (0.000)

11 0.987 0.025 1.136 0.123 86 37.0 (0.000) 1 (0.338)

12 0.546 0.053 0.224 0.053 1197 101.0 (0.000) 48 (0.000)

13 0.823 0.036 0.377 0.312 7 9.5 (0.002) 2 (0.181)

14 0.912 0.020 1.242 0.042 229 19.2 (0.000) 121 (0.000)

15 1.333 0.022 3.255 0.104 186 84.1 (0.000) 1649 (0.000)

16 0.975 0.047 3.425 2.155 1 2.9 (0.234) 24 (0.000)

17 1.290 0.109 2.422 0.696 8 1.5 (0.218) 2 (0.131)

18 1.035 0.047 −0.873 0.380 13 2.5 (0.288) 61 (0.000)

19 0.946 0.046 −2.403 0.867 15 0.6 (0.725) 144 (0.000)

20 1.014 0.037 0.033 0.267 8 98.5 (0.000) 16 (0.000)

21 1.049 0.048 2.434 0.670 4 0.0 (0.954) 10 (0.001)

kyu 1 1.160 0.120 1.799 0.374 4 31.1 (0.000) 3 (0.080)

2 0.891 0.057 0.563 0.140 137 6.6 (0.037) 11 (0.001)

3 1.232 0.138 0.604 0.291 3 6.4 (0.042) 2 (0.166)

4 0.877 0.014 0.841 0.014 1883 69.0 (0.000) 26 (0.000)

5 0.967 0.019 1.196 0.084 35 16.9 (0.000) 6 (0.019)

6 1.007 0.021 0.008 0.209 15 2.4 (0.125) 49 (0.000)

7 0.954 0.025 1.491 0.082 51 37.7 (0.000) 46 (0.000)

8 1.162 0.031 1.814 0.132 21 103.4 (0.000) 59 (0.000)

9 1.363 0.030 2.054 0.090 59 42.5 (0.000) 268 (0.000)

10 1.215 0.033 1.890 0.078 49 62.1 (0.000) 321 (0.000)

11 1.067 0.021 1.842 0.174 43 9.5 (0.009) 124 (0.000)

12 0.647 0.045 −0.088 0.082 290 7.3 (0.026) 233 (0.000)

13 1.069 0.042 0.009 0.378 27 5.1 (0.024) 17 (0.000)

14 0.947 0.016 0.898 0.036 152 2.5 (0.285) 3 (0.072)

15 1.306 0.025 2.812 0.075 223 131.8 (0.000) 493 (0.000)

16 0.995 0.024 2.047 0.653 2 0.7 (0.401) 23 (0.000)

17 1.015 0.103 −3.975 1.446 5 0.9 (0.646) 52 (0.000)

18 1.031 0.039 0.403 0.269 3 1.1 (0.285) 12 (0.001)

19 0.974 0.043 −2.389 1.184 4 0.0 (0.994) 76 (0.000)

20 1.020 0.033 −0.206 0.443 4 0.1 (0.775) 22 (0.000)

21 1.033 0.053 2.043 0.391 19 4.3 (0.038) 17 (0.000)
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Table 8 (continued)

id LS FE IV FE

θ θ − 1 s.e θ θ − 1 s.e 1st F Overidentification Endogeneity

oki 1 1.124 0.109 1.822 0.471 7 8.8 (0.003) 2 (0.169)

2 1.474 0.149 3.898 0.807 19 0.2 (0.926) 36 (0.000)

3 0.447 0.167 0.512 1.399 11 1.4 (0.494) 0 (0.955)

4 0.617 0.025 0.566 0.019 878 3.9 (0.141) 35 (0.000)

5 0.855 0.135 0.008 0.456 17 6.7 (0.034) 8 (0.005)

6 0.859 0.020 0.908 0.037 183 6.8 (0.033) 4 (0.056)

7 1.087 0.012 1.034 0.015 1339 0.1 (0.943) 37 (0.000)

8 1.192 0.042 1.063 0.070 54 3.9 (0.139) 7 (0.008)

9 1.087 0.075 0.141 0.346 6 5.6 (0.062) 21 (0.000)

10 1.154 0.020 1.331 0.046 60 1.7 (0.190) 11 (0.001)

11 0.897 0.063 0.619 0.081 295 24.6 (0.000) 24 (0.000)

12 1.182 0.076 1.356 0.068 159 14.3 (0.001) 11 (0.001)

13 0.923 0.104 0.642 0.137 81 1.7 (0.191) 3 (0.096)

14 1.085 0.086 1.089 0.085 3874 2.5 (0.111) 0 (0.503)

15 1.388 0.030 1.826 0.064 109 49.6 (0.000) 50 (0.000)

16 1.029 0.048 5.028 3.527 1 2.3 (0.318) 38 (0.000)

17 1.088 0.166 0.925 0.666 3 39.0 (0.000) 0 (0.808)

18 1.135 0.051 3.574 0.854 9 46.6 (0.000) 58 (0.000)

19 1.031 0.110 −0.949 0.891 6 50.6 (0.000) 7 (0.009)

20 1.022 0.038 0.005 0.311 9 104.3 (0.000) 27 (0.000)

21 1.195 0.069 2.591 0.368 10 45.1 (0.000) 20 (0.000)

(1) For sector classification (id), see Tables 2 and 3. Final demand sector (id = 0) is omitted

(2) All variables are taken first difference of log-transformed values in the period 1970–2015 (9 observations every 5 years 
after 1975 for Okinawa, 10 observations every 5 years after 1970 for the rest)

(2) LS FE is a least square fixed effect estimator with panels of input sectors. Standard error is cluster-robust assuming 
heteroskedasticity over input sectors

(3) FE IV is a fixed effect estimator with the instrumental variables: macro-TFP in output region, CGPI of output sector and 
input sectors. Standard error is cluster-robust assuming heteroskedasticity over input sectors. 1st F is the result of F test 
under null hypothesis that explanatory variables are weakly correlated with instruments. Overidentification is the result of 
Sargan–Hansen test under null hypothesis that all instruments are correlated with residuals. Endogeneity is the result of 
Davidson–MacKinnon’s J test under null hypothesis that an ordinary least squares estimator of the same equation (i.e., LS 
FE) yields consistent estimates
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+2σ +σ σ 2σ
Fig. 6 Sensitivity of difference between ν and ν̂  (Agriculture, Hokkaido). Plots the difference between two 
types of network effects in Table 5, allowing θ to vary under interval estimation: one in the 68% CI and the 
other in the 98% CI. If they are above zero under variation, the result shown in Table 5 is robust

+2σ +σ σ 2σ
Fig. 7 Sensitivity of difference between ν and ν̂  (Agriculture, Kanto)

+2σ +σ σ 2σ
Fig. 8 Sensitivity of difference between ν and ν̂  (Agriculture, Chubu)
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+2σ +σ σ 2σ
Fig. 9 Sensitivity of difference between ν and ν̂  (Agriculture, Kinki)

+2σ +σ σ 2σ
Fig. 10 Sensitivity of difference between ν and ν̂  (Agriculture, Chugoku)

+2σ +σ σ 2σ
Fig. 11 Sensitivity of difference between ν and ν̂  (Agriculture, Shikoku)
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+2σ +σ σ 2σ
Fig. 12 Sensitivity of difference between ν and ν̂  (Agriculture, Okinawa)

Fig. 13 Interregional Network in Rice to Rice Milling (in Steady State, 2005). Visualization based on the input 
coefficients matrix of the Interregional Input‒Output Table 2005. The thickness of edges corresponds to the 
scale of input coefficients (thick if ω ≥ 0.05; moderate if 0.03 ≤ ω < 0.05; thin if 0.01 ≤ ω < 0.03; or omitted if 
ω < 0.01). Green nodes denote rice (r_), yellow nodes represent rice milling (m_)
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Fig. 14 Interregional Network in Wheat and Barley to Flour Milling. Green nodes denote wheat and barley 
(w_), and yellow nodes represent flour milling (f_)

Fig. 15 Interregional Network in Flour Milling to Noodles Bread Confectionary. Green nodes denote flour 
milling (f_), and yellow nodes represent noodles bread confectionary (n_)
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Fig. 16 Interregional Network in Feed Crops to Dairy Farming. Green nodes denote dairy farming (d_), and 
yellow nodes represent feed crops (f_)

Fig. 17 Interregional Network in Dairy Farming to Dairy Products. Green nodes denote dairy farming (d_), 
and yellow nodes represent dairy products (p_)
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Fig. 18 Interregional Network in Feed Crops to Livestock. Green nodes denote livestock (l_), and yellow 
nodes represent feed crops (f_)

Fig. 19 Interregional Network in Livestock to Slaughter. Green nodes denote livestock (l_), and yellow nodes 
represent slaughter (s_)
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