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Abstract 

In recent years, there has been a resurgence of interest in the controversies sur-
rounding capital theory. At the heart of these debates are the empirically observed 
near-linearities in the price–rate of profit and wage rate of profit curves. This article 
posits that these near-linearities can be attributed to the low effective rank property 
inherent in the economy’s system matrices of input–output coefficients. This suggests 
that a comprehensive representation of how prices evolve in response to changes 
in income distribution can be achieved with only a few eigenvalues and their respec-
tive eigenvectors. Furthermore, this low-dimensional system possesses the capability 
to capture the majority of distinctive features that characterize the input–output struc-
ture of the economy in relation to price movements.
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Eigendecomposition
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1 Introduction
In recent years, research has repeatedly shown the near-linear shape of price–rate of 
profit (PRP) trajectories and wage–rate of profit (WRP) curves. While PRP trajectories 
with pronounced curvatures do exist, they are relatively few, and even fewer exhibit a 
single extremum. We do not a priori rule out the possibility of two extrema in the eco-
nomically relevant region, that is, for the rate of profit taking on prices from zero to 
its maximum (see Mariolis and Tsoulfidis 2016a; Shaikh et al. 2022). The explanations 
offered for these linearities were based on the characteristic distribution of the eigen-
values of the system matrices (see Mariolis and Tsoulfidis 2011; Tsoulfidis 2021, pp. 
132–133). Specifically, in the usual dimensions of input–output matrices, the dominant 
eigenvalue is notably higher (by 40–60%) than the second, followed by the third and a 
limited number of subsequent eigenvalues, their exact number of which depending on 
the size of the matrices. The remainder of subdominant eigenvalues form a long tail and 
paint an exponentially decreasing distribution.
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Three hypotheses have been proposed to elucidate the skewed distribution of eigenval-
ues and the nearly linear patterns observed in PRP and WRP curves:

1 The (nearly) randomly distributed input–output coefficients (Bródy1997; Schefold 
2013, 2020 and 2023).

2 The closeness of vertically integrated compositions of capital (VICC) between sec-
tors; that is, the product of sectoral capital–labor ratios times the Leontief inverse 
(Shaikh 1984, 1998 and Petrović 1991).1

3 The low effective-rank or effective dimensionality of the utilized matrices shapes the 
exponential fall in their eigenvalues, which in turn determines the near-linear fea-
tures of PRP and WRP curves (Mariolis and Tsoulfidis 2018; Tsoulfidis 2021 and 
2022).

The purpose of this study is to examine the extent to which these three hypotheses 
are consistent with the available evidence and proceed with the less-researched third 
hypothesis by operationalizing a novel metric of effective rank based on the Shannon 
entropy and complemented by a similarly motivated metric. It is important to emphasize 
from the outset that the apparent near linearity of PRP curves does not imply causal-
ity running from the marginal productivity of capital to the rate of profit, as in Samu-
elson’s one-commodity world. The lack of causality underscores the incongruity within 
neoclassical theory as it has been pointed out in the old capital theory controversies and 
continues to hold in the current developments in capital theory (see Shaikh 2016a, pp. 
429–433, Kurz 2020; Kersting and Schefold 2021).

The remainder of the article is structured as follows: Sect. 2 contains the linear clas-
sical model of production and elucidates the derivation of PRP and WRP curves. Sec-
tion 3 critically evaluates the plausibility of the competing explanations for the observed 
near-linearities. It also introduces the concept of effective rank (or dimensionality) to 
discern the impact of eigen or singular values on the behavior of the entire economic 
system. Section 4 embarks on a spectral decomposition of vertically integrated input–
output coefficients in an effort to assess the significance of the polynomial terms and the 
associated with these eigenvalues. Section 5 illustrates the relative importance of each of 
these polynomial terms by utilizing actual input–output data of the US economy of 15 
sectors of the year 2020. This analysis offers a more profound insight into the practical-
ity and reliability of the proposed approach. Section 6 continues the analysis by testing 
the effective rank metrics utilizing data from the benchmark input–output tables of the 
years 2007 and 2012 and discusses the findings and the consistency of the two metrics. 
Section 7 summarizes the key findings and concludes with the idea that there is overfit-
ting of data and that fewer data and dimensions compressed in few sectors would might 
suffice to capture the characteristic features determining the motion of the economic 
system.

1 For recent updates and extensions, see Ferrer-Hernández and Torres-González (2022) and Torres-González (2022).
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2  The linear model of production
In a preliminary step, our analysis begins by assuming a single commodity circulating 
capital linear model of production, whose unit labor values

where � = 1× n vector of labor values; l = 1× n vector of labor coefficients; A = n× n 
matrix of input–output coefficients, with elements 0 ≤ aij < 1 , which is nonnegative, 
irreducible, primitive and diagonalizable with distinct eigenvalues. Then unit labor value 
is the sum of the labor value of inputs �A , plus the living labor l added by workers.2 
Throughout this article, we denote matrices in boldface uppercase letters, vectors by 
lowercase boldface letters, and scalar quantities are indicated in italics. Solving Eq. (1) 
yields

The prices of production or equivalently, equilibrium prices are given by:

where r = the economy-wide average rate of profit; b = n× 1 vector of the basket of 
goods that workers purchase with their money wage w ; π = 1× n the left-hand only 
positive eigenvector corresponding to the maximal eigenvalue r−1 . Equation  (3) states 
that prices of production, π , are equal to the sum of labor cost, πbl , and the cost of cir-
culating capital, πA , augmented by the profits estimated on the circulating capital, rπA . 
The solution of Eq. (3) will be

The left-hand positive eigenvector defined up to multiplication by a scalar and stands 
for relative prices, which need to be normalized that is to define the appropriate scalar. 
For this purpose we estimate the standard commodity σ, that is the right-hand unique 
positive eigenvector of the matrix the vertically integrated input–output coefficients 
A[I− A]−1 = H (see Pasinetti 1977). Thus, we write:

where R is the maximum rate of profit or the reciprocal of the maximal eigenvalue 
1/R of the matrix H. The so-derived output proportions or standard commodity σ is also 
defined up to a multiplication by a scalar. A meaningfully defined scalar to be used for 
the scaling of the output proportions of the matrix HR is defined as follows:

(1)� = l + �A,

(2)� = l[I− A]−1.

(3)π = πbl + πA + rπA,

(4)πr−1
= πA[I− A − bl]−1.

(5)σ = RHσ,

s = σ

( ex

�σ

)

,

2 Tsoulfidis (2021, ch. 7) provides a comprehensive analysis and application of a realistic numerical example involving 
input–output data of five meaningfully constructed sectors. The discussion delves into the estimation of labor values, 
prices of production, and the trajectories of the PRP, along with the WRP curves.
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where x is the n× 1 vector of gross output and e is the 1× n unit summation vector or 
market prices, which are by definition are equal to one.3

The next step is to fix the relative prices in (4) and labor values in (2) by the above-
defined standard commodity s , and derive the normalized row vector of prices of 
production:

and the monetary expression of labor values, defined as

(see Shaikh 1998). We establish the following equalities

That is, the standard sum of prices of production is equal to the standard sum of values 
and both are equal to the actual sum of output. Thus, since the money wage w = pb , 
which is equal to the value of basket of commodities purchased by workers, Eq. (3) after 
some manipulation can be rewritten in terms of normalized prices as follows:

and p[I− A] = wl + rpA or p = wl[I− A]−1 + rpA[I− A]−1 and

We post-multiply Eq. (7) by the normalized standard commodity and we get

It follows that

We divide through by vs = ps and we end up with 1 = w + rR−1 and

which solves for the linear wage relative rate of profit curve, where ρ ≡ rR−1 , with 
0 ≤ ρ < 1 . By substituting (8) in Eq. (7), we will have

Equation (9) is used in the estimation of the price–relative rate of profit trajectories, 
which become the focus of our study. After all, Sraffa’s (1960) emphasis was on the 
price-feedback effects and the movement of price consequent upon changes in income 
distribution.

p = π

( ex

πs

)

,

v = �

(ex

�s

)

ps = vs = ex.

(6)p = wl + pA + rpA

(7)p = wv + rpH.

ps = wvs+ rpHs.

ps = wvs+ rR−1ps.

(8)w = 1− ρ,

(9)p = (1− ρ)v[I−HRρ]−1.

3 Miller and Blair (2009, p. 42) note that they “redefine the physical units of measurement for each sector to be the 
amount that can be bought for $1.00; that is, so that the per-unit price for each sector’s output is $1.00”.
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To analyze the precise shape of the WRP curves, we would need access to more com-
prehensive input–output data and a longer time frame, especially, if our objective is to 
draw meaningful comparisons related to technological change. Within this specific con-
text, we can derive estimations of the WRP curves from Eq. (6) as outlined below:
p[I− A − rA] = wl solving for p , we get p = wl[I− A − rA]−1.

We post-multiply by x both sides of the above and by invoking normalization condi-
tion px = ex , we arrive at the WRP relation:

Hence, we may treat the rate of profit, the independent variable, and by assigning to 
the relative rate of profit prices ρ = r/R starting from zero (corresponding to the maxi-
mum wage) until we attain the maximum profit rate (corresponding to zero wage), we 
generate the WRP curve of the total economy (see Tsoulfidis 2021, chs. 4, 5 and 7). If 
the price paths exhibit near linearity, it logically follows that the WRP curves would also 
approximate linearity, rendering the reswitching of techniques (i.e., a shift from a cap-
ital-intensive technique to a labor-intensive one and vice versa, as income distribution 
changes) a remote possibility.

3  The exponentially falling eigenvalues: three hypotheses
In the following discussion, we aim to assess the degree to which each of the three pro-
posed hypotheses aligns with the specific skewed distribution of eigenvalues, which is 
responsible for the quasi-linear characteristics of PRP trajectories and WRP curves.

3.1  The randomness hypothesis

Let us start by examining the hypothesis of randomness, or more precisely, the near-
randomness of the distribution of the input–output coefficients in matrix A . Empiri-
cal evidence consistently indicates that the eigenvalues of matrix A adhere to a skewed 
distribution. However, it is essential to recognize that not every skewed distribution of 
eigenvalues necessarily originates from a matrix that is strictly or nearly random. To 
meet the criteria for such classification, a matrix must satisfy specific conditions. These 
include ensuring that all its elements are semi-positive and less than one, in addition to 
maintaining full rank.

As the dimensions of the random matrix increase, a notable phenomenon becomes 
apparent: the subdominant eigenvalues tend to approach zero, eventually forming an 
L-shaped distribution. Empirical research on input–output matrices consistently dem-
onstrates that the spectral gap, defined as the difference between the moduli (or absolute 
values) of the two largest eigenvalues, decreases as the size of the input–output matrix 
grows (see Mariolis and Tsoulfidis 2011 and 2014, Shaikh et al. 2022).

Moreover, recent studies (Tsoulfidis 2021 and 2022) present evidence challenging 
the random matrix hypothesis, indicating that it does not withstand the scrutiny of rel-
evant statistical tests. Beyond these findings, more intuitive and systematic explanations 
exist, particularly concerning the nature of technological change and the associated 
input–output coefficients. These coefficients, estimated in constant prices, consistently 
decline over time, as observed in works such as Carter’s (1970) study and the research 

(10)w =
ex

l[I− A − ρRA]−1x
.
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by Tsoulfidis and Tsaliki (2019). Furthermore, the persistent ranking of industries based 
on their backward, forward, and total linkages provides an additional basis for rejecting 
the randomness hypothesis, as highlighted in Tsoulfidis and Athanasiadis’ (2022). Shaikh 
(2016) further argued that the random matrix hypothesis primarily applies to the mon-
etary representation of input–output data. In this context, the entries in the columns of 
matrix A signify the relative shares of various inputs in the total output of each industry. 
However, when expressed in physical terms rather than monetary terms, these matrices 
do not exhibit the characteristics of random matrices. In the same spirit, Petri (2021) 
contended that “[…] the coefficient matrices derived from I-O tables are not random. In 
fact it seems impossible to expect them to be random. Then different ‘methods’ for the 
same sector derived from different I-O tables should have unpredictably different coeffi-
cients; on the contrary, bread is going to need flour however produced, cars are going to 
need metals and paint, and so on; and most of the zeros, if input–output tables were suf-
ficiently disaggregated to show them, would coincide”. It is not exactly right that the ran-
domness hypothesis requires purely random all elements of matrix A . Schefold (2013, p. 
10) for example, notes: “It is clear that the elements of actual input–output tables are not 
strictly random: they are not independent, in that if, for example, aij is a chemical used 
in the production of a pharmaceutical product i, the quantity aik may denote another 
chemical required in a precise amount”. Finally, Shaikh et  al. 2022, conducted experi-
ments with input–output coefficients for the US economy, ranging from a 15× 15 indus-
try layout to a detailed 403× 403 industry representation. Their research revealed that 
the eigenvalues of matrix H follow a Weibull distribution, which does not align with the 
near-randomness hypothesis.

3.2  The proximity of the VICCs to the economy’s average hypothesis

The exponentially falling distribution of eigenvalues is also consistent with the remain-
ing two hypotheses from which the closeness of VICCs of the industries to the econ-
omy-wide average is quite appealing to researchers. The idea is that if the VICCs are 
too close to each other, except for just a few sectors, it follows that the maximal eigen-
value (along with the top subdominant ones) will be crucial for the behavior of the entire 
economy lending support to the conceptualization of one-commodity world econo-
mies.4 The remainder of eigenvalues will be flocking together at negligibly small values, 
whose effect will not be felt in the economy.

The trouble with this hypothesis is that the estimation of VICCs depends on equilib-
rium prices needed for the estimation of the VICCs. In short, there is a circularity issue, 
which can be hardly overcome unless the estimations are carried out in terms of labor 
values, that is, the vertically integrated employment coefficients ( l[I− A]−1 ) or mar-
ket prices, although the latter depend on variations of interest (profit) rate or simply by 
stipulating that all three kinds of prices, despite their differences, nevertheless end up 
in quite close estimations of the VICCs. However, the question becomes, how can one 
decide between too different or too similar VICCs? There is no such metric, and the 
notion of the VICC, although intuitively sound and in the right direction; nonetheless, 

4 The idea is that if the VICC is the same across sectors, it follows that there is one technique of production and produc-
tion of a single commodity (Samuelson 1962).
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requires further qualifications, which are difficult to come by. Thus, it becomes impera-
tive to invoke (if not contrive) a non-price-dependent metric.

3.3  The low effective rank (or dimensionality) hypothesis

The third in line hypothesis, the effective rank, needs to be defined first and then dis-
cuss its explanatory content. Roy and Vetterli (2007) are from the first that proposed 
a continuous or discrete metric, namely the effective rank of a matrix, which serves to 
quantify the information content within a signal.5 This metric is estimated from the well-
known Shannon (1948) entropy, specifically the spectral entropy index computed from 
the singular values, denoted as, s, derived from the matrix HR. These singular values 
are essentially the square roots of eigenvalues of the matrix H′HR2orHH′R2 (see Meyer 
2001, pp. 411–412). The advantage of singular values over the eigenvalues is that they are 
always positive and real. The proposed effective rank metric gives us the number of sin-
gular vectors that significantly contribute to the signal, and in our case the movement of 
prices and their distinctive shape. The Shannon entropy index, a key component of this 
metric, is defined as follows:

where σi′s stand for the standardized singular values of the matrix, whose effective rank 
we want to estimate, with i = 1, 2, . . . , n . Thus, we have
σi = si/

∑n
i si , where si = s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 are the singular values.

The exponential of Eq. (11) gives the effective rank (erank) of the matrix, which may be 
significantly lower than the nominal rank:

In other words, equation (12) denotes the number of singular values necessary to com-
press an equivalent amount of entropy as the entire matrix. The nature of the studied 
process invokes the use of common logarithms precisely because the data are in the digit 
numeral system, and the rank of a matrix is also in digits. The following are properties of 
the entropy-based metric of rank:

 (i) If si = s = 1/n then all singular values are the same and so is the influence each 
of them at the outcome, that is, minimal. The entropy is at a maximum, equal to 
log(n) and the effective rank is also at a maximum equal to elog(n).

 (ii) In the limit where a single singular value significantly dominates over the others, 
which are comparatively much smaller, the entropy tends to decrease and approach 
zero. Consequently, the effective rank approaches one.

(11)S = −

n
∑

i

σilogσi,

0 ≤ S ≤ log(n)

(12)erank(HR) = eS .

5 Their metric is inspired by the work of Campbell (1960).
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In short, the effective rank metric is a meaningful representation of continuous or in 
our case discrete rank, which is maximized when the magnitude of the singular values 
are all equal and minimized when a single singular value dominates over the others.

Equation  (12) gives the effective rank or dimensionality of the matrix which may be 
significantly lower than the nominal rank. The latter might be equal to n , that is, the 
maximum number of linearly independent columns (or rows) of the matrix under 
study. The economic meaning of the above formula is the number of sectors required to 
encompass the same disorder (entropy) as is contained in the total economy. The Shan-
non entropy is utilized in industrial economics to measure the degree of diversity and 
concentration and presence of a sort of monopoly power (see Hart 1971 and Tirole 1988, 
p.222). It is also utilized in studies of income distribution and the input–output structure 
(Proops 1983, Mariolis and Tsoulfidis 2013). In recent years the same metric includes 
applications in analytical political economy in identifying random processes (Scharf-
enaker 2022). In the case of a random nxn matrix, the nominal rank will be n, that is, the 
number of linearly independent row or column vectors.

A similar, albeit leaning more towards linearity, result is achieved by applying an alter-
native effective rank metric, which bears distinct similarities with that based on Shan-
non entropy (for details see Bunea and Xiao 2015):

Since our matrix HR is diagonalizable, its trace is equivalent to the sum of its eigenval-
ues weighted by the maximal singular value of the same matrix.

4  Spectral decomposition of the vertically integrated input–output 
coefficients

Before subjecting the aforementioned formulas to empirical testing, it is essential to 
grasp the potential information loss resulting from compressing the economy into a sig-
nificantly smaller number of sectors, as indicated by the effective rank estimations. To 
address this, we employ an indirect estimation of the effective rank through a spectral 
or eigen decomposition of the matrix HR , which although not symmetric nevertheless 
is diagonalizable (Meyer 2001, pp. 514 and 547). The matrix HR can be expressed in its 
spectral decomposition form, as detailed by Meyer (2001, pp. 517–8) and Mariolis and 
Tsoulfidis (2018):

where �i, i = 1, 2, ..., n stand for the  normalized eigenvalues of the  matrix H with the 
dominant �1 = 1, and y  and x are  the left-hand 1× n and right-hand n× 1 eigenvec-
tors, respectively. The first or maximal eigenvalue is denoted by�1 = 1 , while the second 
eigenvalue denoted by �2  and the remaining or subdominant eigenvalues are denoted 
by�n . Since each of the formed matrices results from the multiplication of two vectors, 
their respective rank will be equal to one. Adding more terms increases the nominal 
rank of the resulting matrices according to the number of added terms. It is impor-
tant to emphasize that the presence of imaginary eigenvalues does not alter Eq.  (14). 

(13)
trace(HR)

σmax(HR)
.

(14)HR =
(

y1x1
)−1

x1y1 + �2

(

y2x2
)−1

x2y2 + · · · + �n

(

ynxn
)−1

xnyn,
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Furthermore, in empirical input–output data, the imaginary part of eigenvalues typically 
appears in the subdominant lower ranks, which are generally much smaller than their 
also small real part. Therefore, complex numbers need not enter into the approximations 
through Eq. (14).

The empirical evidence supports our perspective across various countries and over 
multiple years. Based on our numerical illustration, Fig. 1 visually represents the imagi-
nary part of eigenvalues on the vertical axis and the real part on the horizontal axis. 
Notably, the imaginary part appears when the real part is exceptionally small. Setting a 
significance threshold for the eigenvalues of our matrix HR at 0.2, the top three eigen-
values compress the majority of the system’s information. Raising the threshold to 0.3 
results in only the top two eigenvalues containing most, if not all, necessary information 
of matrix HR . These eigenvalues and their corresponding eigenvectors are all real and 
positive. This eigenvalue distribution suggests that the effective rank of our matrix HR 
falls between 2 and 3. Consequently, the effective interdependence of industries in the 
economy is significantly smaller than implied by the nominal interdependence or nomi-
nal rank. This finding supports the notion of a simpler input–output structure character-
izing real economies rather than a complex one. Therefore, a system with just two or at 
most three eigenvalues is adequate to unveil the key features of an economy’s input–out-
put structure concerning price movements. These results hold true across various coun-
tries and time spans (see Tsoulfidis 2021, pp. 137–138 and the literature cited there).

It would be of great interest to examine the extent to which the eigendecomposition 
and effective rank analyses lead to similar results. Furthermore, to explore whether the 
integration of both methods yields more conclusive insights, particularly from a prac-
tical standpoint, regarding the effective dimensions of empirical matrices. To illustrate 
this, we employ the eigendecomposition and effective rank techniques on a real input–
output table of the US economy from the year 2020—the latest available data at the time 
of writing.

5  An illustrative example based on input–output data of the USA (2020)
The input–output table of the US economy of the year 2020 is available at the 15 × 15 
sectoral structure of total requirements, or what is the same as the Leontief inverse 
[I− A]−1 . The following are the 15 sectors: 1. Agriculture, etc., 2. Mining, 3. Utilities, 
4. Construction, 5. Manufacturing, 6. Wholesale trade, 7. Retail trade, 8. Transportation 

-0.2 0 0.2 0.4 0.6 0.8 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Fig. 1 The location of eigenvalues of matrix HR in the complex plane
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and warehousing, 9. Information, 10. Finance, insurance, real estate, 11. Professional 
and business services, 12. Educational services, health care, and social assistance, 13. 
Arts, entertainment, recreation, accommodation, and food services, 14. Other services, 
15. Government.6 The matrix of input–output coefficients A is derived by inverting the 
Leontief inverse and subtracting it from the identity matrix I . Consequently, we obtain 
the matrix H = A[I− A]−1 representing the vertically integrated input–output coef-
ficients.7 Furthermore, we calculate the vector of employment coefficients, l , by divid-
ing the sectoral wages by the corresponding output available in the commodity-by-the 
industry table from the same source. This process takes into consideration differences 
in skills, acknowledging that more skilled workers receive higher wages. In other words, 
we assume that the issue of skill differences is taken care of by the operation of market 
forces. We adjust these findings by dividing by the economy-wide average wage, as given 
by the USA social security administration (https:// www. ssa. gov). The workers consump-
tion goods vector, b , is determined by multiplying the so-obtained average money wage 
times the share of personal consumption expenditures of each sector in the total. Utiliz-
ing these vectors and matrices, we estimate the actual price paths through Eq. (9) above, 
where ρ ≡ r/R represents the relative rate of profit. This ratio is the quotient of the rate 
of profit, denoted as r , assigned to prices ranging from zero to the maximum rate of 
profit, R . The maximum rate of profit corresponds to the reciprocal maximal eigenvalue 
of matrix H.

For the shake of clarity of presentation and economy in space, Fig. 2 below portrays 
a panel of eight out of our 15 price trajectories along with their corresponding three 
approximations—linear, quadratic, and cubic—derived from Eq. (14) above. This selec-
tion focuses on eight sectors, specifically those exhibiting the most curved price paths, 
with the exception of the last one, which follows an almost linear trajectory and is 
included to complete the panel of graphs in Fig.  2 for illustrative purposes. The hori-
zontal axis of each graph represents the relative rate of profit, ρ , while the vertical axis 
depicts the ratio of the estimated price, p , over the direct price, v , denoted as pi/vi . The 
straight green lines correspond to linear approximations of estimated price trajecto-
ries, as determined by Eq.  (9), with ρ values ranging from zero to nearly 1. The black 
dashed lines represent square approximations, the red dots signify cubic approxima-
tions, and the blue with dots line represents the actual estimated prices whose paths we 
seek to approximate. When the estimated price of production surpasses the direct price 
( pi/vi = 1) , the industry is deemed capital-intensive; conversely, a labor-intensive indus-
try exhibits a ratio below 1. A crossing of the pi/vi = 1 line from above or below signifies 
a change in the characterization of an industry’s capital intensity, from capital-intensive 
to labor-intensive or vice versa.

6 The data are available at the USA Bureau of Economic Analysis (BEA) (2023), whose link is the following: BEA: Previ-
ously Published Estimates. We select SUPPLY-USE and the input–-output total requirements data for the year 2020 can 
be downloaded from the filename: IXI_TR_1997-2021_PRO-SEC.
7 The market prices are supposed to be equal to one monetary unit, whatever this happens to be. In other words, 
because input–output tables are constructed in terms of aggregated industries, there is no physical measure of the sec-
toral output. Consequently, the adoption of a unit of measurement, such as one million USD worth of sectoral output 
becomes compelling. This convention yields equivalent results to expressing all values in physical measurement units. 
For further elaboration and numerical illustrations, see Miller and Blair (2009, ch. 2).

https://www.ssa.gov
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We observe that the linear approximation (as this can be judged by the mean abso-
lute deviation) is quite satisfactory even in case that one would only accept a relatively 
minimal deviation. The quadratic approximation, in general, is an improvement over the 
linear, even for this small size of input–output structure. However, the same cannot be 
asserted with the cubic, which we find, in most cases, excessive and therefore redundant.

One would be wondering if the same answer regarding the number of terms or the 
rank suggested by the eigendecomposition would be derived through the application of 
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the exponential of the Shannon index of entropy. For this purpose, we estimate the sin-
gular values, si of the matrix HR  or what is the same the square roots of the eigenvalues 
of the matrix HH′R

2
= H′HR2 . Our estimates are shown in Table 1 below:

From Shannon entropy, denoted as S , with an exponential value of 2.107, the proxim-
ity of the effective rank of the system matrix to two implies that utilizing only the first 
two terms of Eq.  (14) would yield a highly accurate approximation of the actual price 
path. As mentioned above the effective rank is a metric to signify the fact that some 
industries (columns of the matrix) are more fundamental than others, in that the other 
industries have a structure which is almost a linear combination of the fundamental sec-
tors. In such cases, it is anticipated that the effective dimensionality of the matrix will be 
considerably lower than its nominal dimension. The effective rank metric is designed to 
capture this proximity, providing a measure that is generally not an integer, though it will 
eventually be rounded. This approach acknowledges that the effective rank metric, bor-
rowed from probability and/or information theory, lacks the precision of its counterpart 
in linear algebra. Consequently, one should anticipate a non-integer result, necessitating 
rounding for meaningful comparison with the standard algebraic rank of the matrix.

As expected, a comparable estimate arose from the utilization of the alternative effec-
tive rank metric outlined in relation (13). Thus, we got:

which is consistent with the approximations derived from our spectral decomposition, 
where the cubic factor exhibited only marginal improvements This suggests that there 

trace(HR)

σmax(HR)
=

2.2305

1.4392
= 1.5498

Table 1 Singular values, Shannon’s entropy and effective  ranka

a The effective rank remains the same when employing natural (instead of common) logarithms, given the appropriate 
adjustment of the base. Consequently, the Shannon entropy S in terms of natural logarithms reformulates relation (12) 
aseS/ln(10)

Ranking of singular 
values

Singular values 
(1)

Normalized singular 
values (2)

Common logarithms 
of (2)
(3)

The product 
of (2)x(3)
(4)

1 1.439 0.477 −0.322 −0.153

2 0.569 0.188 −0.725 −0.137

3 0.287 0.095 −1.022 −0.097

4 0.195 0.064 −1.191 −0.077

5 0.158 0.052 −1.282 −0.067

6 0.110 0.036 −1.439 −0.052

7 0.083 0.027 −1.561 −0.043

8 0.052 0.017 −1.764 −0.030

9 0.040 0.013 −1.873 −0.025

10 0.028 0.009 −2.028 −0.019

11 0.019 0.006 −2.192 −0.014

12 0.017 0.006 −2.237 −0.013

13 0.010 0.003 −2.487 −0.008

14 0.007 0.002 −2.619 −0.006

15 0.004 0.001 −2.846 −0.004

Sum: 3.020 1.000 Shannon (S) 0.746

erank = es 2.107
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may be no need to incorporate the cubic term in the factorization of the 15× 15 size 
input–output structure. Figure 3 below provides a visual comparison of both scenarios.

6  Results on the effective rank and their evaluation
We have conducted experiments using input–output data of varying dimensions and 
spanning multiple years of the US economy. Specifically, our analyses of the benchmark 
input–output data for the years 2007 and 2012 indicate that a quadratic approximation 
is suitable for dimensions of 15× 15 . For higher dimensions, such as the 71× 71 indus-
tries input–output matrices, the effective rank was nearly twice higher than that of the 
15× 15 dimensions, but when we consider the difference in dimensions we find that the 
effective rank changed only marginally. A result, confirmed by the spectral decompo-
sition which showed that for all practical purposes, a cubic term is more than enough 
for a satisfactory approximation. Further attempts with the fourth or fifth term did not 
enhance the accuracy of the approximation (Tsoulfidis 2022). We also examined the 
input–output data with dimensions of 405 × 405 for the benchmark years 2007 and 2012. 
The effective ranks for these matrices were found to be 8.648 and 8.495, respectively (see 
Fig. 4, below). However, eigen approximations were not explored for these exceptionally 
high-dimensional input–output tables.

In examining matrices of lower dimensions, specifically the 54 × 54 matrices for the 
USA in 2007 and 2012 (Timmer et al. 2015), our findings remained consistent. In both 
instances, the quadratic approximation of price trajectories proved highly satisfactory 
(Tsoulfidis 2021). Interestingly, the inclusion of cubic and quartic terms did not enhance 
the accuracy of the approximation, even for prices of production with trajectories char-
acterized by the more pronounced curvature. Remarkably, these price of production tra-
jectories exhibit surprising small deviation from direct prices, implying a close proximity 
of their VICCs to the economy-wide average ones or, equivalently, the Sraffian standard 
ratio.

The effective rank, determined by the ratio of the trace to the maximal singular value 
of matrix HR , is highlighted for specific years with starred markers. Upon a cursory con-
sideration of Fig. 4, it becomes apparent that, as the economy undergoes increased dis-
aggregation, the effective rank exhibits a slight elevation in comparison to the expansion 
in the dimensions of the matrix. This observation challenges the (near-) randomness 
hypothesis, according to which, as the dimensions of a matrix expand towards infinity, 
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the system’s stochastic nature should manifest, leading to a reduction in rank and even-
tual convergence to 1. It becomes abundantly clear that neither the so-called spectral gap 
(the difference between the moduli, or absolute values, of the two largest eigenvalues) 
increases nor the respective estimations of the effective rank confirm such a hypothesis, 
for a reasonable (economically meaningful) increase in the size of input–output matri-
ces. Moreover, the observed increase in effective rank with the expansion of dimensions 
suggests an exponentially falling distribution of the eigenvalues, resembling the findings 
of Shaikh et al. (2022) that align with a Weibull distribution.

Both metrics for effective rank yield similar results for matrices of intermediate size. 
Nevertheless, as the number of sectors expands, the Shannon entropic definition met-
ric shows a considerable and swift increase, likely due to its exponential nature. In con-
trast, the trace to the maximal singular value metric produces comparable results. The 
effective ranks are lower for the 15× 15 industry structure, approximately the same for 
intermediate-sized ( 54 × 54 and 71× 71 ) input–output structures, and somewhat lower 
for the matrices of the more detailed 405× 405 industry structure.8 These findings lend 
support to the view that as the dimensions of the matrix AorH increase, there is corre-
sponding increase in the number of subdominant eigenvalues or singular values, which 
become influential for the motion of the economy. Furthermore, by taking the ratio of 
the entropy-based effective rank to its maximal effective rank, we estimate the percent-
age of compressed information to the total available, that is, the ratio:

which for the 15× 15 matrix of 2020 gives 0.65, that at least 65% of the total informa-
tion contained in the matrix HR is compressed in the first two singular values. Similar 
are the entropy-based effective rank results for the years 2007 and 2012 for the 15× 15 , 
54 × 54 , 71× 71 and 405× 405 dimensions which we display in Table 2 below.

In the SVD (singular value decomposition) approximation, the requirement to distin-
guish the dominant from the subdominant singular values is to acquire nearly 2/3 of the 
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Fig. 4 Effective ranks for matrices of different dimensions, USA, 2007 and 2012

8 The data for the 54× 54 input–output structure come from the World Input–Output Database (Timmer et al. 2015) 
and the link for the data is wiod@rug.nl. The input–output data for the US economy are from the Bureau of Economic 
Analysis and refer to industry-by-industry total requirements. For the link see footnote 6.
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total, which is a usual parsimonious threshold to capture the most important features of 
the original matrix while minimizing the amount of error or information loss. Similarly, 
the measure of the effective rank provides valuable insights into the structure and com-
plexity of the underlying data and reveals how many of the singular values of the matrix 
HR are needed to acquire the nearly 66.6% of the economic system’s matrix information, 
a percentage attained by a surprisingly small number of singular values.

The results for the countries that we tested were no different from those of the US 
economy. The distribution of eigen and singular values exhibited a consistent pattern 
described by the same exponential equation, which fit well with the distribution of 
eigenvalues across all years and countries tested (Tsoulfidis 2021). These findings lead 
to the idea that there are certain regularities embedded deeply in the available input–
output data, and they are manifested through the skew distribution of eigen or singular 
values, which are in turn determined by the effective rank (or dimensions) of the system 
matrices.

From a mathematical perspective, the concept of effective rank and its related dimen-
sions, estimated through Shannon entropy or trace indexes, is well-founded. This is pri-
marily because the top singular values demonstrate notable distinctions from the rest, 
containing a considerably greater amount of explanatory information. Our analysis of 
the 15× 15 input–output structure indicates an effective rank of two when rounded to 
the nearest integer, a result consistent with that obtained through eigendecomposition. 
In practical terms, it is feasible to construct an analytical model featuring just two or a 
few pivotal sectors that encapsulate the core dynamics of the overall economy, particu-
larly regarding price movements. Therefore, it is appropriate to designate these sectors 
as the primary drivers of the economy, granting them more substantial significance in a 
simple yet comprehensive economic model. It is worth reiterating that as the number of 
sectors increases, in the empirical matrices we have hitherto examined, we observe that 
the effective rank of these matrices increases, albeit at a rate far lower than the number 
of industries. This finding suggests that while additional industries become more rele-
vant in the economic landscape, their number remains limited and conditioned by the 
percentage of compressed information they contain.

Finally, the matrix of fixed capital stock, derived through the capital flow tables, indi-
cated much lower dimensions, and the quadratic term would be more than enough.9 
After all, the second eigen- or singular value in these matrices is markedly lower than the 

Table 2 Effective rank and percentage of compressed information

Years Dimensions

15× 15(%) 54× 54(%) 71× 71(%) 405× 40 5 (%)

2007 64.3 68.2 68.3 63.7

2012 64.0 68.0 67.3 65.3

9 Only a few matrices of capital (or investment) flows are available. The latter, with proper multiplication by the inverse 
of the diagonal matrix of capital stock per unit of output gives rise to the matrix of capital stock coefficients (see 
Tsoulfidis 2021, ch. 7). For instance, the latest capital flows matrix of the USA is that of the year 1997 of the 65× 65 
structure. The capital flow tables are rarely published, so matrices of capital stock for the missing years can be con-
structed based on restrictive but not unrealistic assumptions.
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maximal. Besides, in capital stock matrices, as expected, there are too many rows with 
zero elements. The idea is that neither the consumer goods industries nor services pro-
duce capital goods, so their rows are filled either by zeros or relatively small numbers. 
It is important to point out that the post-multiplication of the capital stock matrix by 
the Leontief inverse gives rise to a new matrix, whose form takes on that of the capital 
stock matrix. In counting the number of zeros in our 65 × 65 capital stock matrix, we 
found 39 rows that added to the zeros scattered to the rest of the cells amounted to 61 
percent of the total figures of the capital stock matrix, without counting the near-zero 
negligibly small elements (Tsoulfidis 2021, pp.71–78 and 181). These findings suggest 
that the more concrete the analysis by including the capital stock matrix, K , the sparser 
the resulting K[I− A]−1R matrices, the lower their nominal rank and so the effective 
rank becomes and in fact is found much lower than that estimated in the respective cir-
culating capital model. Consequently, the more the L-shaped distribution of eigenval-
ues, the more nearly linear the price and WRP curves. A result well-established in the 
pertinent literature (see Mariolis and Tsoulfidis 2011 and 2016b, Shaikh 2016, p. 441–2, 
Tsoulfidis 2021). In terms of the spectral effective rank and compressed information, we 
can tell that the structure of the economy becomes even simpler and therefore much 
easier approximated through the use of a couple of terms or singular values.

From the above, we deduce that the distributions of eigen- and singular values 
decrease exponentially fast, toward zero. This result is repeatedly found in the US 
economy regardless of the number of industries and over different spans of time. The 
same pattern has also been found in the data of all hitherto tested input–output data 
and countries over the years. Thus, rightfully, this distribution of eigenvalues may take 
the characterization of a ‘stylized fact’, the result of the low effective rank of the system 
matrices. The economic meaning of this finding is that only for very few industries do 
their input–output coefficients change independently of the rest of the input–output 
structure of the economy. The remainder of the industries depends on developments 
taking place in these rather few but, in a sense, hyper-industries that deserve further 
investigation.

7  Summary and concluding remarks
From our discussion, it follows that both the spectral decomposition and the effec-
tive rank metrics complement each other and separate and combined contribute to 
our approximation of economic reality, as described in its input–output structure. The 
information derived supports the idea that the complex structure of the economy can be 
distilled to a few key sectors, simplifying the complexity inherent in economic systems. 
The hitherto analysis has shown that Samuelson’s (1962) one-commodity world descrip-
tion of the economy was an oversimplification, but so was Ricardo’s corn model. Marx’s 
schemes of simple reproduction could also be taken as a one-commodity world because 
of the assumption of the equal organic composition of capital between departments. 
In this line of research, we can also treat Sraffa’s standard system and the device of the 
standard commodity. All these lend support to the idea of simpler structures, within 
which may be compressed most of the information needed to explain the motion of the 
economy.
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Our findings of near-linear price trajectories by no means suggest that the neoclassi-
cal theory is consistent in dealing with real-world features. On the contrary, the prob-
lems of the marginal productivity theory of income distribution persist, as the equality 
of marginal productivity of a factor production with its payment results from an identity, 
and not from a causal relationship from the marginal product of a factor to the rate of 
its payments as expected in the neoclassical theory (see Shaikh 2016, ch. 9). Further-
more, the assumption of given endowments characterized by high substitutability and 
the subjective nature of preferences permeate the neoclassical analysis not only in its 
pure exchange description, but also in its models of production with produced means of 
production. We have shown that for the usual input–output structure of the economy, 
the first couple of eigen or singular values are adequate for the construction of models 
that mimic the operation of the entire economy to questions of price movements, among 
others. In this respect, the principal components analytical method may be used, and it 
has been used effectively in this direction (Tsoulfidis and Athanasiadis 2022).

In short, the applied eigen (or spectral) decomposition method revealed that the 
input–output structure of the economies is simpler than is usually thought, and a lot of 
information is compressed in the maximal eigenvalue of the system matrices while the 
remaining eigen- or rather singular-values add little practically useful additional infor-
mation. Thus, by limiting ourselves to the first few terms of the eigendecomposition, we 
obtain a satisfactory approximation of the price trajectories consequent upon changes 
in income distribution. In so doing, we end up with the view that the actual economies 
are not like a one-commodity world. The latter would require equal capital intensities 
between industries, which is another way to say that the system’s matrices would have 
nominal and effective rank equal to one. This does not mean that our multi-commodity 
world requires all produced commodities and dimensions to uncover its structural fea-
tures. From the above it follows that it is quite reasonable to assume that a two-secto-
ral (akin to the Marx–Feldman–Mahalanobis ‘corn-tractor’ model) or a three-sectoral 
model would be sufficient as a realistic substitute for an actual disaggregated economy 
and fully explain the price trajectories (and their difference from labor values).

Based on our research, which focuses on effective rank, we have identified a limited 
number of industries that consistently stand out among the diverse array of industries 
over time. Our analysis began by examining the input–output structure of 15 industries 
in the year 2020 and subsequently extended to include benchmark years 2007 and 2012, 
exploring various industry structures. The initial 15× 15 industry framework evolved 
progressively into larger structures, namely 54 × 54 , 71× 71 , and ultimately, a compre-
hensive 405× 405 industry structure. Our empirical findings reveal that as the number 
of industries expands, the effective rank experiences only marginal increases. This sug-
gests that a specific set of industries, typically numbering from a minimum of two to a 
maximum of nine, depending on the level of industry detail, play a pivotal role. Further-
more, these key industries seem to maintain consistency over the years and act as carri-
ers of technological changes. In contrast, the remaining industries exhibit a nearly linear 
dependence on these key industries.

Thus it comes as no surprise that the Shannon’s metric and eigendecomposition are 
related to the opinion expressed by Mariolis and Tsoulfidis (2016a, b), Tsoulfidis (2021) 
Petri (2021) and Shaikh et al. (2022) about the structure of linear models of production 
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that is, that the interdependence and therefore the structure of the industries is not ran-
dom and thus a shift in the distribution of technical coefficients (indicating a techno-
logical change) cannot happen randomly. Consequently, our results may give a reason 
as of why dimensionality reduction is both possible and desirable within a deterministic 
modern classical context. In a nutshell, we are dealing with over fitting data and over-
dimensional representations of the actual economies. Our analysis lends support to the 
view that the deep laws of motion of the system can be laid bare by de-noising our data 
and meaningfully compressing the dimensions of the system to just a few.
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