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Abstract This paper extends the classical Samuelson multiplier–accelerator model
for national economy. Actually, this new modeling structure removes the basic short-
coming of the original model producing stable business cycles when realistic values
of the parameters (multiplier, accelerator) are entered into the system of equations.
Under this new approach, we introduce some kind of randomness and memory into
the system. We assume that consumption, private investment and governmental ex-
penditure depend upon the national income values of the last n (n > 1) years and
further assume that multiplier and accelerator factors are stochastic variables. Then
stochastic delayed difference equations of higher order are employed to describe the
model, while the respective solutions of higher order polynomials for the expectation
of national income variables correspond to the typical observed business cycles of
real economy. Stability and controllability conditions are investigated while numeri-
cal examples provide further insight and better understanding as regards the control
actions, system design, and produced business cycles.
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1 Introduction

Keynesian macroeconomics inspired the seminal work of Samuelson (1939), who
actually introduced the business cycle theory. Although primitive and using only the
demand point of view, Samuelson’s prospect still provides an excellent insight into
the problem and justification of business cycles appearing in national economies. In
the past decades, many more sophisticated models have been proposed by other re-
searchers; see Chari (1994), Chow (1985), Dassios and Kontzalis (2012), Dassios
et al. (2012), Dassios and Kalogeropoulos (2014), Dassios and Zimbidis (2014), Day
(1999), Puu et al. (2004), Rosser (2000), Westerhoff (2006), Wincoop (1996). All
these models use superior and more delicate mechanisms involving monetary as-
pects, inventory issues, business expectation, borrowing constraints, welfare gains,
and multi-country consumption correlations.

Some of the previous articles also contribute to the discussion for the inadequacies
of Samuelson’s model. The basic shortcoming of the original model is: the incapa-
bility to produce a stable path for the national income when realistic values for the
different parameters (multiplier and accelerator parameters) are entered into the sys-
tem of equations. Of course, this statement contradicts with the empirical evidence
which supports temporary or long-lasting business cycles.

In this article, we propose a generalization of the typical model incorporating de-
layed variables into the system of equations. The proposed modification succeeds
to provide a more comprehensive explanation for the emergence of business cycles
while also produce a stable trajectory for the expectation of the national income. Ac-
tually, it succeeds to model stable business cycles when realistic and stochastic values
of the multiplier and accelerator parameters are entered into the system of equations.
So, we can safely deduce the fact that individuals and/or institutions base their deci-
sions (for consumption or investment levels) upon the experience of the last n years,
n > 1.

The rest of this paper is organized as follows. Section 2 contains three subsections:
Sect. 2.1 provides a short review for the organization of the original model, Sect. 2.2
discusses the incentives of a reformulation based on delayed information structure
and also providing the system of difference equations governing the whole model
and Sect. 2.3 provides a practical justification for the reformulated model. Section 3
investigates the stability of some interesting special cases. Section 4 suggests a typical
state feedback action for the different parameters involved and also proposes how to
design the corresponding solution trajectories. Section 5 contains some numerical
examples and Sect. 6 concludes the entire paper.

2 The Model

2.1 Samuelson’s Original Multiplier–Accelerator Model

The original version of Samuelson’s model is based on the following assumptions:
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Assumption 2.1 National income Tk in year k, equals the summation of three ele-
ments: consumption, Ck , private investment, Ik , and governmental expenditure Gk

Tk = Ck + Ik + Gk.

Assumption 2.2 Consumption Ck in year k, depends on past income (only on last
year’s value) and on marginal tendency to consume, modeled with a, the multiplier
parameter, where 0 < a < 1,

Ck = aTk−1.

Assumption 2.3 Private investment Ik in year k, depends on consumption changes
and on the accelerator factor b, where b > 0. Consequently, Ik depends on national
income changes,

Ik = b(Ck − Ck−1) = ab(Tk−1 − Tk−2).

Assumption 2.4 Governmental expenditure Gk in year k, remains constant

Gk = Ḡ.

Hence, the national income is determined via the following second-order linear dif-
ference equation:

Tk+2 − a(1 + b)Tk+1 + abTk = Ḡ.

2.2 The Reformulation—Delayed Samuelson’s Model

The reformulated (delayed) version of Samuelson’s model is based on the following
assumptions:

Assumption 2.5 National income Tk in year k, equals the summation of three ele-
ments: consumption, Ck , private investment, Ik , and governmental expenditure Gk :

Tk = Ck + Ik + Gk. (1)

Assumption 2.6 Consumption Ck in year k, depends on past income (on more
than one past year’s value) and on marginal tendencies to consume, modeled with
a1, a2, . . . , an, the multiplier parameters, where 0 < a1 + a2 + · · · + an < 1,

Ck = a1Tk−1 + a2Tk−2 + · · · + anTk−n. (2)

Assumption 2.7 Private investment Ik in year k, depends on consumption changes
and on the positive accelerator factors b1, b2, . . . , bm. Consequently, Ik depends on
the respective national income changes,

Ik = b1(Ck − Ck−1) + b2(Ck−1 − Ck−2) + · · · + bm(Ck−m+1 − Ck−m).



Page 4 of 24 I.K. Dassios et al.

By using Eq. (2) we get

Ik = b1

(
n∑

i=1

aiTk−i −
n∑

i=1

aiTk−(i+1)

)
+ · · ·

+ bm

(
n∑

i=1

aiTk−(i+m−1) −
n∑

i=1

aiTk−(i+m)

)
,

or, equivalently,

Ik =
m∑

j=1

bj

(
n∑

i=1

aiTk−(i+j−1) −
n∑

i=1

aiTk−(i+j)

)
. (3)

Assumption 2.8 Governmental expenditure Gk in year k, obeys the feedback law Ik

in year k, depends on consumption changes and on the positive accelerator factors
c1, c2, . . . , cp . Consequently, Gk is equal to,

Gk = Ḡk + c1Tk−1 + c2Tk−2 + · · · + cpTk−p. (4)

Hence, by replacing Eqs. (2), (3), (4) into Eq. (1), the national income is determined
via the following high-order linear difference equation:

Tk = Ḡk +
p∑

i=1

ciTk−i +
n∑

i=1

aiTk−i

+
m∑

j=1

bj

(
n∑

i=1

aiTk−(i+j−1) −
n∑

i=1

aiTk−(i+j)

)
. (5)

Here Ḡk , may be a fully controlled item by the government.

Assumption 2.9 The multiplier and accelerator parameters follow stochastic pat-
terns. They are actually random variables where

E[Ai,k] = ai, i = 1,2, . . . , n,

E[Bi,k] = bi, i = 1,2, . . . ,m.

We use the basic equation for conditional expectations, i.e.

E(X) = E
(
E[X|Y ]), (6)

where X, Y are random variables. Additionally, we define the information filtration
Hk as all the events prior and inclusive of time k. Then, according to relationship (6)
and by using Eq. (5), we obtain

τk = E[Tk] = E
[
E[Tk|Hk]

]
,
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or, equivalently,

τk = Ḡk +
p∑

i=1

ciE[Tk−i] +
n∑

i=1

aiE[Tk−i]

+
m∑

j=1

bj

(
n∑

i=1

aiE[Tk−(i+j−1)] −
n∑

i=1

aiE[Tk−(i+j)]
)

,

or, equivalently,

τk = Ḡk +
p∑

i=1

ciτk−i +
n∑

i=1

aiτk−i

+
m∑

j=1

bj

(
n∑

i=1

aiτk−(i+j−1) −
n∑

i=1

aiτk−(i+j)

)
. (7)

2.3 Practical Justification for the Reformulated Model

In this subsection, we provide some practical justification for the new assumptions of
our reformulated model. Actually we may state the following arguments:

1. The delayed model (or memory model) is quite interesting from the mathematical
point of view. The higher order polynomials produce oscillatory trajectories for
the solutions and consequently for the national income values.

2. The “delay” concept has also been suggested by previous papers. We refer to
Chow (1985), who suggests the delayed information as a tool to explain and sup-
port the statistical data of Chinese economy for the years 1932–1982.

3. The national accounts of main countries are closing with substantial time delay
after the calendar year end. So, the information used in next year’s accounts are
estimations or closed values from past years.

4. Delayed information may be used in financial projections of national accounts.
5. Consumption may depend not only on current year’s experience but also on pre-

vious years. Customers remember the level of their income not only of the current
year but also from previous years. So, they adjust their behavior accordingly.

6. Private investment may also consider the level of national economy of previous
years. An investor keeps in mind not only the current level of economy but the
time sequence and the corresponding trajectory of national economy all the recent
years.

7. Governmental expenditure is not normally constant (as Samuelson’s model sug-
gests) but certainly is a variable item fully controlled from the government taking
into account the past experience and also the future targets for the national econ-
omy.

8. The multiplier and accelerator factors are not constant over time but may fluctuate
and most probably behave as random variables.
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3 Stability Investigation

The full stability investigation for the general case described by Eq. (6) is quite dif-
ficult and probably not so informative. Actually, the full investigation leads to higher
order polynomials where there are no analytical solutions. Of course, numerical so-
lutions and approximations may be employed for those cases. Here we restrict our
attention to two special cases. Firstly, we consider the following case.

Consumption Ck depends only on past year’s income value while private investment
Ik depends on consumption changes within the last two years and governmental ex-
penditure Gk depends on past year’s income value.

This means that for (5) we have n = 1, a1 = a, m = 2, b1 = b2 = b, Ḡk = 0,
p = 1, c1 = c. The national income is then determined via the following third-order
linear difference equation:

Tk = (a + c + ab)Tk−1 − abTk−3,

or, equivalently,

Tk+3 − (a + c + ab)Tk+2 + abTk = 0. (8)

By investigating the stability of (8) we arrive at Theorem 3.1. Firstly, we state the two
following well-known and useful lemmas.

Lemma 3.1 (See Azzo and Houpis 1995; Dorf 1983; Kuo 1996; Ogata 1987) The
homogeneous difference equation (8) is asymptotically stable, if and only if all roots
of the equation

s3 − (a + ab + c)s2 + ab = 0,

lie within the open disk,

S = {
s ∈C : |s| < 1

}
. (9)

Lemma 3.2 (See Azzo and Houpis 1995; Dorf 1983; Kuo 1996; Ogata 1987) By
means of the bilinear transformation

s = w + 1

w − 1
, (10)

the open disc (9) is transformed into the open half plane

W = {
w ∈ C : Re(w) < 0

}
.

Theorem 3.1 Consider Eq. (8). Then for 0 < a < 1, b, c > 0, the equilibrium T ∗ = 0
is asymptotically stable if and only if

a + c < 1;
a + c + 4ab < 3;

2a2b2 + abc + a2b < 1.
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Proof By investigating the stability of (8), for a + c �= 1 and the equilibrium T ∗ of
(8) we have

T ∗ − (a + c + ab)T ∗ + abT ∗ = 0,

or, equivalently,

T ∗ = 0.

The characteristic equation of (8) is

s3 − (a + ab + c)s2 + ab = 0.

By applying the transformation (10) into Eq. (8) we get the polynomial

(1 − a − c)w3 + (3 − a − c − 4ab)w2

+ (3 + a + c + 4ab)w + (1 + a + c) = 0. (11)

A simple procedure to determine the existence of roots with negative real parts is
needed according to Lemmas 3.1 and 3.2. Routh’s criterion is a simple method of
determining the number of these roots. The coefficients of w’s and all powers from
w3 to w0 must be present in the characteristic equation. A necessary but not suffi-
cient condition for stable roots is that all coefficients in (11) must be positive. If any
coefficients, other than 1 + a + c, are zero or if all the coefficients do not have the
same sign, then there are pure imaginary roots or roots with positive real parts and
the equation is not asymptotically stable. Thus

a + c < 1,

a + c + 4ab < 3.

The coefficients of the characteristic equation are arranged in the pattern shown in the
first rows of the following Routhian array. These coefficients are then used to evaluate
the rest of the constants to complete the array.

w3

w2

w1

w0

∣∣∣∣∣∣∣∣
A C

B D

E 0
F 0

∣∣∣∣∣∣∣∣
.

The constants A, B , C, D are defined as follows:

A = 1 − a − c,

B = 3 − a − c − 4ab,

C = 3 + a + c + 4ab,

D = 1 + a + c,
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and

E = −det
(

A C
B D

)
B

= −AD − CB

B
,

F = −det
(

B D
E 0

)
E

= D.

Routh’s criterion states that the number of roots of the characteristic equation with
positive real parts is equal to the number of changes of sign of the coefficients in the
first column; see Azzo and Houpis (1995), Dorf (1983), Kuo (1996), Ogata (1987).
Therefore, the difference equation is stable if all terms in the first column have the
same sign. Since A, B , F are positive, we have

−AD − CB

B
> 0,

or, equivalently,

2a2b2 + abc + a2b < 1.

The proof is completed. �

Next we will consider the following case.

Consumption Ck depends on the last two year’s income values while private invest-
ment Ik depends on consumption changes within the last two years and governmental
expenditure Gk depends on past year’s income value.

This means that for (5) we have n = 2, m = 2, Ḡk = 0, p = 1, c1 = c, a1 > a2,
b1 > b2. We have also to assume a1 > a2 and b1 > b2 because we normal weight
heavier the most recent experience. The national income is determined via the fol-
lowing fourth-order linear difference equation:

Tk = a1Tk−1 + a2Tk−2 + cTk−1 + b1
[
a1Tk−1 + (a2 − a1)Tk−2 − a2Tk−3

]
+ b2

[
a1Tk−2 + (a2 − a1)Tk−3 − a2Tk−4

]
,

or, equivalently,

Tk+4 − (a1 + c + b1a1)Tk+3 − [
a2 + b1(a2 − a1) + b2a1

]
Tk+2

− [
b2(a2 − a1) − b1a2

]
Tk+1 + a2b2Tk = 0. (12)

By investigating the stability of the above equation we arrive at the following theo-
rem.

Theorem 3.2 Consider Eq. (12). Then for 0 < a2 < a1 < 1, 0 < b2 < b1 < 3, and
c > 0, the equilibrium T ∗ = 0 is asymptotically stable if and only if

A > 0;
B > 0;
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E > 0;
BC > AD;
DF > BE.

Here the constants A, B , C, D, E, F , are defined as follows:

A = 1 − c − a1 − a2,

B = 4 − 2c − 2a1 − 2a1b1 − 2a2b2 − 2a1b2 − 2b1a2,

C = 6 + 2a2 + 2b1a2 − 2a1b1 + 2a1b2 + 6a2b2,

D = 4 + 2c + 2a1 + 2a1b1 − 6a2b2 + 2a1b2 + 2b1a2,

E = 1 + c + a1 − a2 + 2b1a1 − 2b1a2 − 2b2a1 + 2a2b2,

F = −AD − BC

B
.

(13)

Proof By investigating the stability of (12), for a1 + a2 + c �= 1 and the equilibrium
T ∗ of (12) we have

T ∗ − (a1 + c + b1a1)T
∗ − [

a2 + b1(a2 − a1) + b2a1
]
T ∗

− [
b2(a2 − a1) − b1a2

]
T ∗ + a2b2T

∗ = 0,

or, equivalently,

T ∗ = 0.

The characteristic equation of (12) is

s4 − (a1 + c + b1a1)s
3 − [

a2 + b1(a2 − a1) + b2a1
]
s2

− [
b2(a2 − a1) − b1a2

]
s + a2b2 = 0. (14)

The homogeneous difference equation (12) is asymptotically stable if and only if all
roots of Eq. (14) lie within the open disk, |s| < 1. By means of the bilinear transfor-
mation s = w+1

w−1 , the open disc is transformed into the open half plane Re(w) < 0.
Hence by applying the transformation in (10) we get the polynomial

Aw4 + Bw3 + Cw2 + Dw + E = 0. (15)

Here A, B , C, D, E are defined in (13). Again we apply the Routh’s criterion in order
to determine the number of roots with negative real parts. It is fairly easy to show that
C > 0 and D > 0. C = 6 + 2a2 + 2b1a2 − 2a1b1 + 2a1b2 + 6a2b2 > 6 − 2a1b1 >

6 − 2a1b1 > 6 − 2b1 > 0 and D = 4 + 2c + 2a1 + 2a1b1 − 6a2b2 + 2a1b2 + 2b1a2 >

6 + 2a2 + 2a2b2 − 6a2b2 + 2a2b2 + 2b2a2 > 6 + 2a2 > 0. Since C,D > 0, and a
necessary but not sufficient condition for stable roots is that all coefficients in (15)
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must have the same sign, we require

A > 0,

B > 0,

E > 0.

The coefficients of the characteristic equation are arranged in the pattern shown in the
first rows of the following Routhian array. These coefficients are then used to evaluate
the rest of the constants to complete the array.

w4

w3

w2

w1

w0

∣∣∣∣∣∣∣∣∣∣

A C E

B D 0
F G 0
H 0 0
J 0 0

∣∣∣∣∣∣∣∣∣∣
.

The constant F is defined in (13). The constants G, H , J are defined as follows:

G = −det
(

A B
E 0

)
B

= E,

H = −det
(

B D
F G

)
F

= −BG − FD

F
= −BE − FD

F
,

J = −det
(

F G
H 0

)
H

= G = E.

From Routh’s criterion equilibrium of the difference equation is stable if all terms in
the first column have the same sign. While A, B , E are positive,

F > 0,

H > 0,

or, equivalently,

BC > AD,

DF > BE.

The proof is completed. �

Remark 3.1 There are available three stability tests. The first method that we used in
the proofs of Theorems 3.1 and 3.2 is based on the bilinear transformation coupled
with the Routh stability criterion. The other two are the Shur–Cohn stability test and
the Jury stability test. The computations required in the Jury test are simpler than
those required in the Shur–Cohn test but according to our view and as commented
also in Ogata (1987), the first method is simpler and more straightforward.

Remark 3.2 In Sect. 5 we provide indicative examples for the stability conditions
derived in Theorems 3.1 and 3.2.
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4 Controllability and State Feedback

In this section we introduce concepts and results of linear control theory for time in-
variant linear discrete state equations. We investigate two other special cases in which
the ci parameters are all zero. So, the governmental expenditure depends only on Ḡk

which is a fully controlled variable as also mentioned in Sect. 2 when formulating
our model. Firstly, we consider the following case.

Consumption Ck depends on past year’s income value while private investment Ik

depends on consumption changes within the last two years and governmental expen-
diture Gk does not depend on any past values.

This means that for (5) we have n = 1, a1 = a, m = 2, b1 = b2 = b, c1 = c2 =
· · · = cp = 0. The national income is then determined via the following third-order
linear difference equation:

Tk+3 − (a + ab)Tk+2 + abTk = Ḡk. (16)

By adopting the following notation:

Tk = y1
k ,

Tk+1 = y2
k ,

Tk+2 = y3
k ,

and

Tk+1 = y1
k+1 = y2

k ,

Tk+2 = y2
k+1 = y3

k ,

Tk+3 = y3
k+1 = a(1 + b)y3

k − aby1
k + Ḡk,

Eq. (16) takes the form

Yk+1 = PYk + QḠk, (17)

where

Yk =
⎡
⎢⎣

y1
k

y2
k

y3
k

⎤
⎥⎦ , P =

⎡
⎣ 0 1 0

0 0 1
−ab 0 ab + a

⎤
⎦ , Q =

⎡
⎣0

0
1

⎤
⎦ .

This is a linear discrete time control system with input vector Ḡk . Linear control
involves modification of the behavior of a given system by applying state feedback.
The state feedback replaces the input Ḡk by

Ḡk = −KYk,
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where

K = [K1 K2 K3],
and the system takes the form

Yk+1 = (P − QK)Yk.

The basic problem is that of choosing a state feedback K such that the resulting
(closed loop equation) is stable. The stabilization in the time invariant case is via
results on eigenvalue placement in the complex plane. In our situation eigenvalues of
the closed loop system are specified to have modulus less than unity for stability. We
can state the following theorem.

Theorem 4.1 Assume the system (17). Then there exists a state feedback law in the
form of

Ḡk = −KYk,

where

K = [−μ1μ2μ3 − ab μ1μ2 + μ1μ3 + μ2μ3 a + ab − (μ1 + μ2 + μ3)
]
, (18)

such that the eigenvalues of the closed loop system can be assigned arbitrarily as μ1,
μ2, μ3.

Proof It is well known that for a system in the form of (17) there exists a state feed-
back law if and only if the system is completely controllable. The necessary and
sufficient condition for complete controllability is

rank
[
Q PQ P 2Q

] = 3.

Since

det
[
Q PQ P 2Q

] = det

⎡
⎣0 0 1

0 1 a + ab

1 ab + a (ab + a)2

⎤
⎦ = −1 �= 0,

the system (17) is controllable with state feedback of the form

Ḡk = −KYk,

where

K = [K1 K2 K3].
Then the closed loop system is of the form

Yk+1 = (P − QK)Yk.
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And thus we have

P − QK =
⎡
⎣ 0 1 0

0 0 1
−ab 0 a + ab

⎤
⎦ −

⎡
⎣0

0
1

⎤
⎦ [K1 K2 K3],

or, equivalently,

P − QK =
⎡
⎣ 0 1 0

0 0 1
−ab − K1 −K2 a + ab − K3

⎤
⎦ ,

with characteristic equation

Π(z) = det(zI3 − P + QK) = z3 + (K3 − a − ab)z2 + K2z + ab + K1.

If we have μ1, μ2, and μ3 as eigenvalues of the closed loop system, then

Φ(z) = (z − μ1)(z − μ2)(z − μ3)

= z3 − (μ1 + μ2 + μ3)z
2 + (μ1μ2 + μ1μ3 + μ2μ3)z − μ1μ2μ3.

We require

Π(z) ≡ Φ(z),

or, equivalently,

−ab − a + K3 = −(μ1 + μ2 + μ3),

K2 = μ1μ2 + μ1μ3 + μ2μ3,

ab + K1 = −μ1μ2μ3

and thus the matrix K takes the values

K = [−μ1μ2μ3 − ab μ1μ2 + μ1μ3 + μ2μ3 a + ab − (μ1 + μ2 + μ3)
]
.

The proof is completed. �

So returning to the difference equation (16), Ḡk is determined via the relation (18),
or, equivalently,

Ḡk = −(−μ1μ2μ3 − ab)Tk − (μ1μ2 + μ1μ3 + μ2μ3)Tk+1

− (
a + ab − (μ1 + μ2 + μ3)

)
Tk+2

and by replacing it into Eq. (16) we get

Tk+3 − (μ1 +μ2 +μ3)Tk+2 + (μ1μ2 +μ1μ3 +μ2μ3)Tk+1 −μ1μ2μ3Tk = 0. (19)
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Example 4.1 We assume the difference equation (16). If for the system (17) we re-
quire the eigenvalue μ1 = μ2 = 0 with algebraic multiplicity 2 and μ3 = a then

K = [−ab 0 ab]
and

Ḡk = [ab 0 −ab]Yk,

or, equivalently,

Ḡk = −abTk − abTk+2.

By replacing the above expression into the difference equation (19) we arrive at

Tk+3 − aTk+2 = 0.

The equilibrium of the above difference equation is asymptotically stable since the
roots of its characteristic polynomial are μ1 = μ2 = 0 and μ3 = a. The example is
completed.

Next we will consider the following case.

We assume that consumption Ck depends on the last two year’s income values, while
private investment Ik depends on consumption changes within the last two years and
governmental expenditure does not depend on past years value, i.e. it depends only
on Ḡk .

This means that for Eq. (5) we have n = 2, m = 2, c1 = c2 = · · · = cp = 0. The
national income in this case is determined via the following fourth-order linear dif-
ference equation:

Tk+4 − (a1 + b1a1)Tk+3 − [
a2 + b1(a2 − a1) + b2a1

]
Tk+2

− [
b2(a2 − a1) − b1a2

]
Tk+1 + a2b2Tk = Ḡk. (20)

We adopt the following notation:

Tk = y1
k ,

Tk+1 = y2
k ,

Tk+2 = y3
k ,

Tk+3 = y4
k ,

and

Tk+1 = y1
k+1 = y2

k ,

Tk+2 = y2
k+1 = y3

k ,
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Tk+3 = y3
k+1 = y4

k ,

Tk+4 = y4
k+1,

or, in matrix form,

Yk+1 = PYk + QḠk, (21)

where

Yk =

⎡
⎢⎢⎢⎣

y1
k

y2
k

y3
k

y4
k

⎤
⎥⎥⎥⎦ ,

P =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−a2b2 b2(a2 − a1) − b1a2 a2 + b1(a2 − a1) + b2a1 a1(1 + b1)

⎤
⎥⎥⎦ ,

Q =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

We can state the following theorem.

Theorem 4.2 Assume the system (21). Then there exists a state feedback law of the
form

Ḡk = −KYk, (22)

where

K =
⎡
⎢⎣

λ1λ2λ3λ4 − a2b2
b2(a2 − a1) − b1a2 − (λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

−[a2 + b1(a2 − a1) + b2a1] − (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

a1(1 + b1) − (λ1 + λ2 + λ3 + λ4)

⎤
⎥⎦

T

,

such that the eigenvalues of the closed loop system can be assigned arbitrarily as λ1,
λ2, λ3, and λ4.

Proof The necessary and sufficient condition for system (21) to have complete con-
trollability is

rank
[
Q PQ P 2Q P 3Q

] = 4.

Since

det
[
Q PQ P 2Q P 3Q

] = 1 �= 0,

the system (21) is controllable and by replacing

Ḡk = −KYk,



Page 16 of 24 I.K. Dassios et al.

where

K = [K1 K2 K3 K4],
the system takes the form

Yk+1 = (P − QK)Yk.

Thus we have

P − QK

=

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−a2b2 b2(a2 − a1) − b1a2 a2 + b1(a2 − a1) + b2a1 a1(1 + b1)

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ [K1 K2 K3 K4],

or, equivalently,

P − QK

=

⎡
⎢⎢⎣

0 1
0 0
0 0

−a2b2 − K1 b2(a2 − a1) − b1a2 − K2

0 0
1 0
0 1

a2 + b1(a2 − a1) + b2a1 − K3 a1(1 + b1) − K4

⎤
⎥⎥⎦ .

Let λ1, λ2, λ3, and λ4 be the eigenvalues of the matrix P − QK with modulus less
than 1 and let there also be roots of the polynomial

z4 − (λ1 + λ2 + λ3 + λ4)z
3 + (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)z

2

− (λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)z + λ1λ2λ3λ4 = 0.

The characteristic polynomial of the matrix P − QK is

det(zI4 − P + QK) = 0,

or, equivalently,

z4 − (
a1(1 + b1) − K4

)
z3 − [

a2 + b1(a2 − a1) + b2a1 − K3
]
z2

− [
b2(a2 − a1) − b1a2 − K2

]
z + a2b2 + K1 = 0,
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and thus the matrix K takes the values

K =
⎡
⎢⎣

λ1λ2λ3λ4 − a2b2

b2(a2 − a1) − b1a2 − (λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

−[a2 + b1(a2 − a1) + b2a1] − (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

a1(1 + b1) − (λ1 + λ2 + λ3 + λ4)

⎤
⎥⎦

T

.

The proof is completed. �

So, returning to the difference equation (20), Ḡk is determined via the relation
(22), or, equivalently,

Ḡk = −(λ1λ2λ3λ4 − a2b2)Tk

− [
b2(a2 − a1) − b1a2 − (λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

]
Tk+1

− [−(
a2 + b1(a2 − a1) + b2a1

)
− (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

]
Tk+2

− (
a1(1 + b1) − (λ1 + λ2 + λ3 + λ4)

)
Tk+3

and by replacing the above expression into Eq. (20) we get

Tk+4 − (λ1 + λ2 + λ3 + λ4)Tk+3

+ (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)Tk+2

− (λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)Tk+1 + (λ1λ2λ3λ4)Tk = 0.

Example 4.2 We assume the difference equation (20). If we require for system (21)
its eigenvalues to be λ1 = λ2 = λ3 = 0 with algebraic multiplicity 3 and λ4 = a1 then

K = −[−a2b2 −b2(a1 − a2) − b1a2 −b1(a1 − a2) + a2 + a1b2 a1b1
]

and

Ḡk = [−a2b2 −b2(a1 − a2) − b1a2 −b1(a1 − a2) + a2 + a1b2 a1b1
]
Yk,

or, equivalently,

Ḡk = −a2b2Tk − (
b2(a1 − a2) + b1a2

)
Tk+1

+ (−b1(a1 − a2) + a2 + a1b2
)
Tk+2 + a1b1Tk+3. (23)

By replacing (23) into the difference equation (20) we arrive at

Tk+4 − a1Tk+3 = 0.

The equilibrium of the above difference equation is asymptotically stable since the
roots of the characteristic polynomial are λ1 = λ2 = λ3 = 0 and λ4 = a1. The exam-
ple is completed.
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5 Numerical Examples: System Design and Practical Implications

In this section we present numerical examples in order to provide further insight
and better understanding regarding the control actions, system design, and produced
business cycles.

Example 5.1 Firstly, we will consider the first case described in Sect. 3 via the differ-
ence equation (8). We will provide an indicative numerical example by using typical
values, refer to Chow (1985), for the basic parameters a and b of the model. Ac-
tually we assume that the expectations of multiplier and accelerator factors are the
following:

E[A] = a = 0.5, E[B] = b = 0.3.

Then Eq. (8) takes the form

Tk+3 − (0.65 + c)Tk+2 + 0.15Tk = 0.

We may use Theorem 3.1 and determine the value of parameter c such that the sys-
tem is stable. Note that Gk = cTk−1 and thus through c the government controls the
relevant governmental expenditure Gk in order to obtain asymptotic stability in the
system of national economy. According to the conditions of Theorem 3.1 and the
given values for a and b, we derive the boundary values for parameter c. By substi-
tuting a and b into the conditions of Theorem 3.1 we get c < 0.5, c < 1.9, c < 5.8,
or, equivalently,

c < 0.5.

Obviously for practical reasons c cannot be negative. The option of a zero c parameter
may also be considered. Actually, that means there is no governmental intervention
into the economic system. Excluding this limited case, we obtain the following in-
equality condition for asymptotic stability:

0 < c < 0.5.

So, as far as the annual governmental expenditure does not exceed the half of last
year’s national income value, the system remains stable. If the government tries to
boost the economy injecting a high level (greater than 0.5Tk−1) of expenditure then
the system becomes unstable.

Now, we can further design the value for parameter c targeting to a high speed
response system. That means that we are going to search which values of the c pa-
rameter guarantee not only the stability of the system (i.e. the solution trajectories
of the system converging to asymptotic stability points) but additionally ensures that
solution trajectories return very quickly to the desired stability level.

The speed of the system’s response is basically characterized by the maximum
value r of the following set:

r = max
{|r1|, |r2|, |r3|

}
,
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Fig. 1 Maximum value r , parameter c

Fig. 2 Maximum value r , parameter c

where r1, r2, and r3 are the roots of the respective characteristic polynomial

s3 − (0.65 + c)s2 + 0.15 = 0,

associated with Eq. (8). So, high speed response coincides with minimizing the value
of r ; see Figs. 1, 2.

Table 1 shows some values of r for some given values of the parameter c. As we
observe from Figs. 1 and 2, there is an increasing linear pattern for the value of r (see
the following graph) exhibiting two different slopes in the intervals (0.00, 0.35) and
(0.35, 0.50). Hence if we choose for example c = 0.35, we guarantee asymptotic sta-
bility and also ensure that solution trajectories will converge fast to the equilibrium.
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Table 1 Parameter c,
maximum value r Parameter c Maximum value r

0.05 0.6201

0.1 0.6313

0.15 0.6347

0.2 0.6506

0.25 0.6512

0.3 0.6539

0.35 0.6634

0.4 0.8300

0.45 0.9211

0.5 1

Indeed, Eq. (8) will then take the form

Tk+3 − Tk+2 + 0.15Tk = 0,

with respective solutions

Tk = g1(−0.335)k + g2(0.668 − i0.043)k + g3(0.668 + i0.043)k,

where g1, g2, and g3 are constants determined by the initial conditions.

Example 5.2 We will now consider the second special case as described in Sect. 3
via the difference equation (12). In line with the initial estimation for the basic values
a and b in the previous example, now we assume that the values for the parameters
a1, a2, b1, and b2 are

E[A1] = a1 = 0.35, E[A2] = a2 = 0.15,

E[B1] = b1 = 0.2, E[B2] = b2 = 0.1.

Note that a1 + a2 = 0.5 = a and b1 + b2 = 0.3 = b. Again the governmental authori-
ties have to control the parameter c because Gk = cTk−1.

By using Theorem 3.2 we observe that there is no viable solution for the system,
i.e. we cannot determine a value for the parameter c in order to obtain a stable model
although the summation of a1 and a2 equals a, while the summation of b1 and b2
equals b. This means that the government should be very careful when deciding the
intervention into the economy via the governmental expenditure and should inves-
tigate how much delayed information is enclosed in the current status of economy.
Furthermore, it should be clarified how much of the volume of consumption of pri-
vate investments may attributable to one, two or three years before and then decide
the intervention into the system.

We assume now different values for the parameters a1, a2, b1, and b2

E[A1] = a1 = 0.1, E[A2] = a2 = 0.4,

E[B1] = b1 = 0.1, E[B2] = b2 = 0.2.
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Note that a1 + a2 = 0.5 = a and b1 + b2 = 0.3 = b. By replacing the above given
values into Eq. (12) we get

Tk+4 − (0.11 + c)Tk+3 − 0.45Tk+2 − 0.02Tk+1 + 0.08Tk = 0.

The constants A, B , C, D, E, F that appear in Theorem 3.2 take the form

A = 0.5 − c,

B = 3.5 − 2c,

C = 6.66,

D = 3.86 + 2c,

E = c + 0.76,

F = − (0.5 − c)(3.86 + 2c) − (3.5 − 2c)6.66

3.5 − 2c
.

By replacing the above values into the conditions of Theorem 3.2 and by taking into
consideration that c > 0, we get

0 < c < 0.5.

We can further design the value for parameter c targeting to a high speed response
system. The speed of the system’s response is basically characterized by the maxi-
mum value r of the following set:

r = max
{|r1|, |r2|, |r3|, |r4|

}
,

where r1, r2, r3, and r4 are the roots of the respective characteristic polynomial

s4 − (0.11 + c)s3 − 0.45s2 − 0.02s + 0.08 = 0,

associated with Eq. (12). So, high speed response coincides with minimizing the
value of r ; see Figs. 3, 4.

Table 2 shows some values of r for some given values of the parameter c. As we
observe there is an increasing linear pattern for the value of r , see Figs. 3 and 4,
exhibiting two different slopes in the intervals (0.00, 0.05) and (0.05, 0.50). Hence,
considering the table and the Figs. 3 and 4, we may choose for example c = 0.05. This
value guarantees the asymptotic stability and also ensures that solution trajectories
will converge fast to stability point. Equation (12) will then take the form

Tk+4 − 0.16Tk+3 − 0.45Tk+2 − 0.02Tk + 0.08 = 0,

with respective solutions

Tk = g1(0.5)k + g2(0.591)k + g3(−0.466 − i0.232)k + g4(−0.466 + i0.232)k.

Here g1, g2, g3, and g4 are constants determined by the initial conditions.
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Fig. 3 Maximum value r , parameter c

Fig. 4 Maximum value r , parameter c

6 Conclusions

Closing the paper, we may argue that the specific research effort is not only a theoret-
ical extension of the basic version of Samuelson’s model, but also a practical guide
for controlling the parameters of national economy system. It investigates the stabil-
ity and controllability concepts producing analytical conditions and solutions. These
conditions enable the decision makers to adjust governmental expenditure such that
to obtain stable trajectories for the expectation of national income values.

As we observe in Sect. 3, the government should have a reduced role and in-
tervention into the system (given the specific values for a, b the expectation of the
multiplier and accelerator factor). Actually, the fastest stability response is obtained
when there is a small governmental expenditure. Interpreting this result in economic
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Table 2 Parameter c,
maximum value r Parameter c Maximum value r

0.05 0.591

0.1 0.6509

0.15 0.71

0.2 0.7506

0.25 0.7982

0.3 0.8391

0.35 0.88

0.4 0.92

0.45 0.96

0.5 1

terms we state the following case. Let us consider a national economy (as described
in Sect. 3). The economy operates properly when a sudden change (input) arrives: e.g.
a catastrophic event causes a substantial reduction into the system just for one year.
The government aims to restore the initial level of economy. Someone may argue
the “obvious-easy action” that government should proceed with a high level govern-
mental expenditure next year in order to restore the economy. The results in Sect. 3
support the opposite. As stated there, the parameter c, of the governmental expendi-
ture should not exceed the value 0.5; otherwise the economy will become unstable.
That is, if the government spends a lot of money next year then this may guide the
whole economy to instability.

Section 4 reveals the relationship between the controllability concept, feedback
action and the way that we can design the trajectories of the economy. As we observe
there, we may design the eigenvalues and consequently the solution trajectories. Con-
sidering the case study mentioned in the paragraph above, we may state that Sect. 4
may help the government not only to restore the stability into the economic system
but also design the time path and the pattern of return.

Finally, a straightforward result is the evidence support for the fact that individ-
uals and institutions have long “memory” and base their decisions for investment
and/or consumption accordingly. The paper restores the inadequacy of the original
Samuelson model that could not produce stable business cycles for the typical realis-
tic values of the multiplier and accelerator parameters. That is obtained via the exis-
tence of higher order difference equations (n ≥ 3), resulting from the delay concept.
The longer the delay, the higher order for the basic difference equation is obtained
for the system. These higher order equations produce complex solutions and conse-
quently oscillatory trajectories where under certain circumstances can be designed to
be stable. Hence, the traditional model has two degrees of freedom (as the associated
equation is a quadratic polynomial) exhibiting difficulties to design a stable trajectory
path while the new version of the reformulated model has n ≥ 3 degrees of freedom
(as the associated equation is an nth order polynomial).
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