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1 � Background
Uniform carbon tax and cap-and-trade system are the first choices according to the 
Kyoto protocol when the policy makers consider the carbon control policies. As is well 
known, these two options theoretically give identical carbon emission distribution. 
However, in reality, carbon tax has hardly been accepted by industries while emission 
certificate as a part of cap-and-trade system such as EU-ETS has been implemented in 
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some limited regions. The realization of these carbon emission control policies is still far 
from the “covering all commodities and regions” stage.

When carbon control policy is implemented in the limited countries, so-called carbon 
leakage phenomenon arises where high carbon intensity industries move to those coun-
tries where no carbon policy exists and import the products. According to the current 
measurement scheme of carbon emission based on the primary energy consumption 
based, or upstream based, “exporting firms and importing products” strategy is natu-
ral, but this strategy could increase the global GHG emission since energy efficiency in 
developing regions tends to be lower than in developed countries. Demand-side-based 
emission assessment has been proposed by embodying the energy consumption into the 
tradable commodities in order to avoid the above loophole.

The basic formulation to embody the emission in the commodity is as follows: accord-
ing to the standard input–output framework, domestic production relationships are rep-
resented by

where A, x and f denote input–output coefficient matrix, production vector and final 
demand vector, respectively. Introducing c as the direct GHG emission coefficient vector 
of each sector, total GHG emission is represented by

where GHG emission is distributed among final demand sectors.
The above procedure can easily be expanded to the bilateral trade by decomposing 

the final demand vector f into domestic final demand and international trade. When we 
deal with the multiregional global trade market where a certain commodity could be 
imported from multiple regions with different technologies and energy sources, more 
complex method is needed.

Peters and Hertwich (2008) proposed the procedure to embody the energy consump-
tions in the international trade based on the multiregional input–output tables (MRIO). 
Then, they define the consumption-based emission inventory as the total emissions 
occurring from economic consumption within a country r as follows:

where f consr , f
prod
r , f er , f

m
r  and f BEETr  represent the total consumption-based emission, 

emission caused by the domestic production, total export to other regions, total import 
from other regions and balance of emissions embodied in trade, respectively.

Liu et al. (2010) expanded the above approach by applying the structural decomposi-
tion analysis (SDA) to see the dynamic structural changes in China. Tang et al. (2013) 
also estimate the international trade of UK applying the embodied energy analysis from 
the view of national energy security.
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It should be noted that the above method based on the input–output analysis focuses 
on the allocation of fossil fuel consumption among commodities. The emissions and the 
technological improvement on energy efficiency of the energy conversion sectors, such 
as power generation sector and petroleum products industry, are not explicitly dealt 
with. Furthermore, when we consider the distribution of the emission allocation and the 
evaluation of the efforts to reduce the GHG emissions, more concrete evaluation proce-
dure is needed. The effects of the partial participation in the GHG control scheme in the 
different accounting method will then appear.

2 � Allocation of emissions—no allocation, no incentive
In addition to the above trans-border indirect emission issue, emission allocation issue 
between secondary energy producer and consumers also arises, since the effort to 
reduce GHG emission should be compatible with the emission allocation. No allocation 
would generate no incentive. In May, 2009, a governmental committee in Japan (EPA 
2008) summarized and compared the following four allocation options:

(1)	 Upstream allocation: the producers and importers of primary energy sources are 
responsible for all carbon emissions.

	 It is easy to measure the national level carbon emission while each consumer includ-
ing firm is not responsible for carbon emission. Therefore, the carbon emission reduc-
tion incentive of demand side is indirect.

(2)	 Downstream allocation: The purchasers of energy are fully responsible for carbon 
emission.

	 When all emission quota is allocated among demand side, the emission reduction 
incentive of power generation would disappear. Monitor and control costs would be 
high since the emissions of so many stakeholders should be covered.

(3)	 Upstream allocation for non-electric energy source producers and downstream 
allocation for power generation companies.

	 Although the number of stakeholders is less than the above second option, the emis-
sion reduction incentive of electricity consumers is still indirect.

(4)	 Carbon emission is distributed between energy conversion companies and con-
sumers according to the conversion efficiency.

	 This is theoretically most rational, but no example exists until today.

For instance, when let μ, N and EP be the energy conversion efficiency, carbon inten-
sity of primary energy and primary energy input, respectively, the carbon emissions allo-
cation of conversion firm (Ce) and consumer (Cd) are represented by

where ES denotes secondary energy demand. As can be seen, efficiency-based carbon 
intensity for the consumer is identical with average primary energy carbon intensity F. 

(4)
Ce = EP× N × (1− µ)

Cd = EP× N × µ = (EP× µ)× N = ES× N
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One can thus evaluate the carbon emission allocation of the energy conversion sector as 
well as the distributed carbon intensity of secondary energy

It should be noted that none of the above four options takes into account the trans-
border issue in the introduction given in Sect. 1.

The emission allocation issue is also focused on by the greenhouse gas protocol, Cor-
porate Value Chain (Scope 3) Accounting–Reporting Standard (Greenhouse Gas Pro-
tocol 2013). In order to account and allocate the greenhouse gas emissions in the global 
supply chains, this report proposes emission accounting standards involving three 
emission categories, i.e., direct emissions as Scope 1 including emissions from opera-
tions that are owned or controlled by the reporting company, Scope 2 including emis-
sions from the generation of purchased or acquired electricity, steam, heating or cooling 
consumed by the reporting company and Scope 3 including all indirect emissions (not 
included in scope 2) that occur in the value chain of the reporting company, including 
both upstream and downstream emissions. The Scope 3 report also proposes the proce-
dure to allocate the total emissions of the facility or the company to the factors if needed. 
The purpose of this study shares the concept of the above Corporate Value Chain Scope 
3, even if this deals with the emissions of the certain production system while this study 
focuses on the macroeconomic impacts of carbon emission policies. Therefore, it is 
expected that the method proposed in this paper will contribute to the assessment of 
Scope 3 expanded to the macroeconomic impacts.

In this study, I employ the option 4 in the above to allocate the emission allocation 
between energy conversion sector and secondary energy consumers including industry 
sectors as intermediate input producers and final demand sectors. The indirect emis-
sions embodied in the products are then evaluated by sector considering the interna-
tional trade. An expansion of the integrate assessment model THERESIA—Toward 
Holistic Economy, Resource and Energy Structure for Integrated Assessment, developed 
by the authors (Mori et al. 2011) is then employed for the numerical calculation.

3 � Trans‑border carbon emission and embodied carbon emission in the 
commodities

This paper aims at the distribution of the carbon emission allocation among market 
players from demand side view. It should be noted that the emissions from primary fossil 
fuel energy are distributed according to the energy conversion efficiency in this study as 
previously described. Thus, for example, total carbon emission of power conversion sec-
tor CTe and the carbon intensity of electric power CIe are defined by

where µe, NFi, Fie and ES denote power conversion efficiency, carbon intensity of pri-
mary energy input of type i (see Table  1c), input of primary energy i for conversion 
sector and total converted secondary energy supply. Again, efficiency-based allocated 
carbon intensity NIe is identical with average input primary carbon intensity. Thus, total 
allocated emission of the consumer Cc and the power producer Ce are

(5)CTe =
∑

i
Fie ×NFi,µe =

ES
∑

i Fie
, Ne =

µe × CTe

ES
=

∑

i Fie ×NFi
∑

i Fie

(6)Cc = NIe × Ec = µe × CTe, Ce = (1− µe)× CTe
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Table 1  Definition of regions, industry sectors and energy

Code Region

(a) Regions

USA USA, Canada

MCM Central America

BRA Brazil

SAM South America

WEP Western Europe

EEP Eastern Europe

FSU Former USSR

AFR Africa

JPN Japan

CHN China

ASN East–South Asia

IND India

TME Middle East

ANZ Oceania

XAP Rest of the world

Code Industry

(b) Industry

INS Iron and steel

CPG Chemical products, paper, 
glass and cement

TRN Transportation machinery

OME Other machinery

FPR Food and beverage

CNS Construction

TWL Textiles

OMF Other manufacturing

AGR Agriculture and fishery

T_T Transportation services

BSR Business services

SSR Social services

Code Description

(c) Energy

Primary

Coal Coal

Oil Oil

Gas Natural gas

RNW Nuclear and renewables

Secondary

P_C Oil products

THM Thermal energy

ELC Electricity

Code Description

(d) Final demand sectors

Imp Import

Exp Export
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where Ec represents electric power consumption of consumer c. Similarly, the carbon 
emission from petroleum products is distributed among consumers according to the 
conversion efficiency. This is also essential when the market share of the biomass-based 
fuel in the total transportation energy supply increases.

Next, I describe the procedure to allocate the carbon emission among industry sec-
tors. Let Fki and Nfk denote the type k secondary energy input and its carbon intensity 
for industry sector i. Then, the carbon intensity of the products NIi is

where Ci, Qi, Xi, FDi, exi and imi represent producer-based carbon emission, output, 
intermediate input total, final demand, export and import of commodity i, respectively. 
Since Ci accounts for the energy input-based carbon emission, this Ci can be interpreted 
as “producer-based” accounting.

When the international trade is considered, the above should be expanded to reflect 
the difference in carbon intensity among regions. Total domestic emission of commodity 
i in the region r, say CNi,r, is represented by

where TRDi (r′, r) represents trade matrix of commodity i between region r′ and r. NIi is 
also expanded to NIi,r to represent the regional difference. This CNi can be interpreted as 
“trade-adjusted” accounting.

The average carbon intensity of the domestic market CIMi,r can be then calculated by

An alternative of indirect carbon emission CMi,r can be calculated as follows where 
energy consumption is embodied in the commodity flow. This CMi,r can be interpreted 
as “commodity-embodied” accounting.

where XIOr (k, i) represent intermediate input from sector k to sector i. The responsible 
carbon emission in the final demand sectors can be calculated in a same way,

The above three emissions, i.e., Ci, CNi and CMi, give identical values in the world 
total.

(7)
∑

k
Fki ×Nfk = Ci = NIi × Qi = NIi × (Xi + FDi + exi − imi)× Qi

(8)CNi,r = NIi,r ×
(

Xi,r + FDi,r − imi,r

)

+
∑

r′ �=r
NIi,r′ × TRDi(r

′, r)

(9)

CNi,r = NIi,r ×
(

Xi,r + FDi,r − imi,r

)

+
∑

r
′
�=r

NI
i,r

′ × TRDi(r
′

, r) = CIMi,r ×
(

Xi,r + FDi,r

)

(10)CMi,r =
∑

k
CIMk ,r × XIOr(k , i)

Table 1  continued

Code Description

Cpf Investment

Csm Consumption

GcS Governmental consump-
tion



Page 7 of 22Mori ﻿Economic Structures  (2016) 5:5 

4 � Brief introduction of an energy‑economic model THERESIA
An integrated assessment model THERESIA—Toward Holistic Economy, Resource and 
Energy Structure for Integrated Assessment, which deals with 15 world regions, 12 non-
energy industry sectors and 7 energy sectors has been developed by the authors (Mori 
et  al. 2011) to assess the middle- to long-term global warming policies including the 
calculation of sectoral economic impacts and energy technology strategies. THERESIA 
includes energy technologies explicitly like existing bottom-up models and generates 
inter-temporal optimization solution. Thus, THERESIA enables us to see the middle- to 
long-term investment strategies which often appear in the energy technologies. THER-
ESIA also provides inter regional transactions by tradable goods. This section briefly 
describes the structure of this model.

Figure 1 shows the conceptual framework of THERESIA with two intermediate sec-
tors, one primary energy inputs and one secondary energy inputs or the certain region. 
Let i denote the non-energy industry sector i. Similar to the conventional input–output 
tables, Xij, aij, Qi, mi, Ii and Ci denote intermediate input from sector i to sector j, input-
out coefficient from industry sector i to sector j, total output of sector i, net import trade 
of sector i, and investment from sector i, respectively. The block corresponding to the 
energy sectors is slightly expanded from conventional IO model.

For the primary energy sector, THERESIA assumes that all primary energies are once 
input and converted to secondary energy sector. Xpe, mp and EC_Pre represent mon-
etary transaction from primary energy to secondary energy, net import and total out-
put of primary energy industry sector. S and Pb denote total input of primary energy in 
physical term and price per unit primary energy.

Intermediate Inputs Final demand

Non-energy 
sectors Energy sectors trade Invest-

ments
Con-

sumption Output

1 2 Primary Secondary m I C Q

Int.
Inputs

Non-
energy
Sectors

1 X11=
Q1 a11

X12=
Q2 a12

O O m1 I1 C1 Q1

2 X21=
Q1 a21

X22=
Q2 a22

O O m2 I2 C2 Q2

Energy
Sectors

Primary O O O Xpe mp O O EC_pre=
PpS

Secondary Xe1=
PeE1

Xe2=
PeE2

O O O O
Ce=
PeEc

EC=
PeE

Value
Added

Capital K Pk K1 Pk K2

YE_AVerp_AV

Labour L PL L1 PL L2

Output Q Q1 Q2
EC_pre=

PpS
EC=
PeE Q

Fig. 1  Conceptual framework of THERESIA (simplified)
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Xej and Ce denote the monetary input from secondary energy to industry sector j and 
to the final energy consumption, respectively, while Ej and Ec represent the secondary 
energy flow in physical term to the industry sector j and final consumption where Pe rep-
resents the price of unit secondary energy flow. Thus, Xej = PeEj holds. Similarly, for the 
total output in monetary term of secondary sector EC and the total secondary energy 
supply E in physical term, EC = PeE holds.

In the non-energy industry sectors, value added is distributed to the capital and labor 
similar to the conventional IO matrix. In THERESIA model, capital costs of energy facil-
ities and labor inputs of energy sectors are aggregated into one value-added sector, since 
available data source for energy technologies mostly describes annualized capital costs 
and operation and management (O&M) costs.

Total outputs of the above economy and GDP are then represented by Q and Y.
Since THERESIA explicitly includes the physical energy flow, both the primary and 

the secondary energy can be disaggregated into more detailed primary energy sources 
and conversion technologies similar to the existing bottom-up energy technology mod-
els such as MARKAL (Loulou et al. 2004) and DNE-21 (Akimoto et al. 2004). In Fig. 2, 
the energy flows in the energy technology block is briefly shown.

THERESIA assumes that all primary energy sources are once converted into second-
ary energies, i.e., thermal energy, petroleum products and electricity, although some sec-
tors actually use primary energy sources directly. Under the constraints on monetary 
balance conditions and technological constraints, THERESIA maximizes the discounted 
sum of the aggregated consumption functions.

When carbon emission reduction policy is imposed, fuel switches and the adoption 
of different energy-related technologies occur as well as the substitution among input 
factors, i.e., energy, capital and labor and the final consumption, and consumption pat-
tern changes among commodities. International trading also varies. For instance, car-
bon emission limit causes replacement of conventional coal-fired power generation 
plant by modern gas fired ones with high costs. Higher electricity price caused by the 

Coal 

Oil 

Gas 

Others 
carbon-free 
sources 
nuclear, hydro, 
solar biomass 

Liquid 
energy 

Thermal 
energy 

Electricity 

Resource 
Endowment 

Primary energy Secondary energy 

Sectoral 
intermediate 

and final 
demand 

Trade 

Fig. 2  Energy flows in the THERESIA
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technological changes spreads to other relative prices and to the whole economic struc-
ture through international trade. Further details are seen in the reference (Mori et  al. 
2011).

Table 1 shows the definitions of the world disaggregated regions, industry sectors and 
energy sources.

Since THERESIA includes 15 world regions, 12 non-energy industry sectors and 7 
energy sectors, some key equation and parameters are documented in this paper. Other 
detailed equations and parameters are shown in the exiting paper (Mori et al. 2011).

For the non-energy industry sectors, THERESIA assumes fixed coefficient input rela-
tionship between intermediate inputs excluding energy inputs and value-added plus 
secondary energy input. In THERESIA, the production functions of industry sector i at 
period t of the region h are represented by

where i, YEi,t
h, LHi,t

h, LLi,t
h, Ki,t

h and Ei,k,t
h denote value added plus energy cost, capital stock, pro-

fessional labor input, other non-professional labor input, and k-type secondary energy 
inputs, respectively. Ah

i (t),B
h
i ,α

h
i ,β

h
i , γ

h
i ,µ

h
i , �

h
i and θ

h
i,j are the parameters where Ai,t

h(t) 
incorporates the technological progress. As can be seen in the above, THERESIA basi-
cally employs the Cobb–Douglas functions except for the relationship between capital 
stock and professional labor input represented by the CES function. The elasticity of 
substitution between capital stock and professional labor input is here assumed to be 
0.2 uniformly. Although, needless to say, CES or other sophisticated function type would 
have been more preferable, however, in order to avoid the uncertainty on the param-
eter estimation and data availability, THERESIA currently employs the above simpli-
fied form. Technological progress rate is adjusted to represent the historical economic 
growth from 1997 to 2007.

THERESIA employs the aggregated consumption function and maximizes their dis-
count sum as follows:

where r, CPi,t
h, Li,t

h, wh and µh
i  represent discount rate, consumption of commodity i, total 

population, the relative weights among regions and commodities, respectively. THER-
ESIA tentatively assumes r, wh and µh

i  to be 5 % per year, the total consumption, and the 
consumption fraction of commodity i of region h, respectively.

THERESIA is currently constructed on the GTAP 5 database with 1997 base year 
while the newest version of GTAP 8 provides 2007 data. Since THERESIA gives dynamic 
optimization pathways, the calculated values of the second and the third periods can 
be compared with the existing historical and the projection data. Some fundamen-
tal parameters such as technological progress and some cost assumptions are thus 

(11)

YEhi,t = Ah
i (t)·





�

�

Kh
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−µh

i + Bh
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i
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��
h
i

LLhi,t
1−�

h
i





βh
i

×

�

�
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i
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calibrated. Further investigations on the parameter estimation and tuning will provide 
more realistic information under climate policies.

Other detailed parameters and assumptions are shown in the literature (Mori et  al. 
2011).

5 � Simulation results of THERESIA
5.1 � BAU simulations

Firstly, I employ the option 4 for the allocation of carbon emission between energy con-
version industry and other consumers including intermediate inputs and final consump-
tion sectors. The equations in Sect. 3 are then imposed into the THERESIA model.

In this paper, as a preliminary result, I show the BAU simulations of THERESIA model 
for 1997–2057. Unlike other integrated assessment models which generate 100-year sim-
ulations to assess the climate policies (IPCC 2013), THERESIA currently gives shorter 
simulation period. There are three reasons: First, THERESIA is designed to see effects 
of climate policies on the energy strategies and the industry allocation issues around the 
mid of this century which could be the bifurcation point based on the current technolo-
gies. Second, long-term IO tables through twenty-first century to deal the with multi-
sectoral model are hard to estimate when considering the economic structure changes. 
Third, since THERESIA is originally formulated as inter-temporal optimization incorpo-
rating multiregions, multisectors and technology implementation strategies. Currently, 
THERESIA model requires almost two to 3 weeks for one calculation (GAMS-CONOPT 
on Intel i7-4770 PC). Further expansion of simulation period would cause numerical cal-
culation issues.

Table 2a, b shows the world total emissions of C, CN and CM. Total numbers are iden-
tical in all cases by definition. One can observe some difference caused by the account-
ing method. First, the carbon emission of the capital formation sector appears only in 
CMi accounting since energy is not the capital goods. Second, when carbon emission is 
embodied in the products, the carbon emission from energy-intensive industries, e.g., 
INS (iron and steel) and CPG (chemical products), decreases around half, while those 
of TRN (transportation machinery), OME (other machinery) and CNS (construction) 
increase around five to ten times. AGR (agriculture) and SSR (social services) sectors 
show similar changes to energy-intensive industries.

Table  3 summarizes the Ci, CNi and CMi of USA, JPN, CHN and IND. Depending 
on the trade and industry structure, it shows slightly different numbers by region. For 
instance, total carbon emission in China and Japan decreases as the indirect emission is 
embodied, while that in USA shows opposite direction. It is suggested that the changes 
in trade structure derive non-straightforward results for Japan and China. In case of 
India, Ci, CNi and CMi spread broadly by industry sector. CNi of INS gives 0.055 billion 
tons of carbon in 2037, while those of Ci and CMi give 0.0055 and 0.0028 billion tons of 
carbon in 2037. This observation suggests that IND imports large amount of iron and 
steel and that exports them embodied in other products.

Figures 3 and 4 summarize the relative emission of different accounting methods to 
the conventional producer-based values Ci. The relative value exceeds unity when Ci is 
less than CNi or CMi where indirect emission of import is large. Figure  3 shows that 
carbon emissions in EEP and FSU in CNi and CMi are lower than other regions. This 
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Table 2  Comparison of carbon emissions Ci, CNi and CMi in billion tons of carbon

INS CPG TRN OME FPR CNS TWL OMF AGR T_T BSR SSR

(a) World Total: industry sectors

Ci: producer-based accounting

1997 0.3429 0.4360 0.0163 0.0652 0.0822 0.0228 0.0342 0.2274 0.1353 0.7515 0.2237 0.2605

2007 0.6695 0.6087 0.0190 0.0890 0.0874 0.0405 0.0524 0.2798 0.1774 1.1244 0.3302 0.3611

2017 1.1160 0.8747 0.0269 0.1039 0.1091 0.0503 0.0546 0.3768 0.2039 1.4641 0.4435 0.5480

2027 1.4343 1.0969 0.0328 0.1232 0.1104 0.0527 0.0661 0.4679 0.2094 1.7359 0.5506 0.7377

2037 1.5595 1.2703 0.0346 0.1386 0.1127 0.0548 0.0814 0.5993 0.2228 2.0520 0.6713 0.9222

2047 1.3970 1.2178 0.0322 0.1337 0.1199 0.0392 0.1036 0.5295 0.2348 2.1418 0.7245 1.1106

CNi: trade-adjusted accounting

1997 0.3430 0.4359 0.0163 0.0651 0.0823 0.0228 0.0342 0.2275 0.1353 0.7515 0.2237 0.2606

2007 0.6693 0.6085 0.0190 0.0889 0.0875 0.0405 0.0524 0.2799 0.1773 1.1248 0.3305 0.3615

2017 1.1126 0.8729 0.0269 0.1037 0.1089 0.0501 0.0544 0.3794 0.2028 1.4639 0.4434 0.5484

2027 1.4356 1.0972 0.0328 0.1228 0.1101 0.0530 0.0660 0.4669 0.2089 1.7397 0.5503 0.7383

2037 1.5610 1.2709 0.0344 0.1378 0.1124 0.0549 0.0808 0.5976 0.2220 2.0580 0.6714 0.9230

2047 1.3981 1.2143 0.0321 0.1329 0.1184 0.0392 0.1034 0.5294 0.2316 2.1534 0.7275 1.1133

CMi: demand-based accounting

1997 0.1531 0.2259 0.0564 0.1940 0.1057 0.1622 0.0440 0.0384 0.0579 0.1401 0.2071 0.1284

2007 0.3024 0.3359 0.0890 0.3448 0.1269 0.3053 0.0733 0.0507 0.0724 0.2152 0.3085 0.1832

2017 0.4819 0.4665 0.1430 0.5021 0.1494 0.4522 0.0742 0.0647 0.0838 0.2920 0.3979 0.2602

2027 0.6073 0.5645 0.1829 0.6643 0.1536 0.5299 0.0843 0.0841 0.0878 0.3503 0.4746 0.3502

2037 0.6743 0.6522 0.2212 0.6901 0.1581 0.5451 0.1016 0.0992 0.0922 0.4051 0.5606 0.4359

2047 0.5780 0.6577 0.1957 0.6305 0.1630 0.3679 0.1231 0.0847 0.0905 0.4047 0.5722 0.4836

COL OIL GAS P_C ELC THM Imp Exp Cpf Csm GcS Total

(b) World Total: energy and final demand sectors

Ci: producer-based accounting

1997 0.0000 0.0075 0.0038 0.5864 1.5091 0.1033 0.0000 0.0000 0.0000 1.6076 0.0000 6.4156

2007 0.0000 0.0114 0.0059 0.8243 1.6742 0.1447 0.0000 0.0000 0.0000 2.0635 0.0000 8.5635

2017 0.0000 0.0126 0.0116 1.5307 2.0573 0.2024 0.0000 0.0000 0.0000 2.6250 0.0000 11.8111

2027 0.0000 0.0139 0.0155 2.1796 2.4508 0.2596 0.0000 0.0000 0.0000 3.1428 0.0000 14.6801

2037 0.0000 0.0153 0.0185 2.8396 2.8553 0.3010 0.0000 0.0000 0.0000 3.7071 0.0000 17.4560

2047 0.0000 0.0004 0.0205 4.1280 3.1061 0.3040 0.0000 0.0000 0.0000 3.8806 0.0000 19.2239

CNi: trade-adjusted accounting

1997 0.0000 0.0075 0.0038 0.5864 1.5091 0.1033 0.5588 0.5588 0.0000 1.6074 0.0000 6.4156

2007 0.0000 0.0114 0.0059 0.8243 1.6742 0.1447 1.7916 1.7916 0.0000 2.0628 0.0000 8.5635

2017 0.0000 0.0126 0.0116 1.5307 2.0573 0.2024 2.5324 2.5324 0.0000 2.6292 0.0000 11.8111

2027 0.0000 0.0139 0.0155 2.1796 2.4508 0.2596 2.4118 2.4118 0.0000 3.1392 0.0000 14.6801

2037 0.0000 0.0153 0.0185 2.8396 2.8553 0.3010 2.9964 2.9964 0.0000 3.7023 0.0000 17.4560

2047 0.0000 0.0004 0.0205 4.1280 3.1061 0.3040 2.2629 2.2629 0.0000 3.8717 0.0000 19.2239

CMi: demand-based accounting

1997 0.0043 0.0197 0.0067 0.5957 1.5190 0.1068 0.4153 0.4153 0.0943 2.4139 0.1421 6.4156

2007 0.0058 0.0329 0.0114 0.8341 1.6878 0.1487 1.1287 1.1287 0.1746 3.0663 0.1943 8.5635

2017 0.0082 0.0413 0.0241 1.5441 2.0727 0.2070 2.0284 2.0284 0.2395 4.0316 0.2748 11.8111

2027 0.0107 0.0451 0.0328 2.2023 2.4686 0.2650 2.8174 2.8174 0.2673 4.8844 0.3702 14.6801

2037 0.0129 0.0517 0.0408 2.8663 2.8740 0.3064 3.0506 3.0506 0.2583 5.9921 0.4182 17.4560

2047 0.0094 0.0301 0.0517 4.1529 3.1244 0.3084 2.6485 2.6485 0.1416 6.5987 0.4551 19.2239
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observation appears more clearly when carbon emission is accounted by CMi in Fig. 4. 
Japan and China also show similar tendency. On the other hand, MCM, IND and ASN 
regions show more than 1.0 results in both Figs.  3 and 4. These observations suggest 
EEP, FSU, JPN and CHN are energy-intensive products exporters.

5.2 � The effects of carbon accounting methods in the partial participation cases

In this study, I calculate various simulation cases based on the above three accounting 
policies under different carbon control targets, different sectoral participation cases and 
different regional participation cases. The global carbon control policy scenarios with 
different carbon emission reduction are the following W-85 and W-70. Since W-85 and 
W-70 exclude the participation of energy conversion sector, these scenarios do not cor-
respond to the conventional market equilibrium cases. Global and all market player par-
ticipation case corresponding to the equilibrium case is described in our previous paper 
(Mori et al. 2011).
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Fig. 3  Relative emission of CNi (trade-adjusted accounting) to Ci (production-based accounting)
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Fig. 4  Relative emission of CMi (commodity-embodied accounting) to Ci (production-based accounting)
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Scenario W-85: All regions and all industry sectors (except for energy conversion 
sectors) participate in carbon emission reduction by 15 % from baseline (BAU) after 
2017.
Scenario W-70: All regions and all industry sectors (except for energy conversion 
sectors) participate in carbon emission reduction by 30 % from baseline (BAU) after 
2017.

Next, I employ the scenarios where partial sectors and regions participate in the car-
bon control policies. These scenarios do not imply the market equilibrium but seem to 
be realistic. This study does not touch upon the outcome of carbon tax, a possible alter-
native policy instrument for carbon control. This topic will be dealt with in the another 
paper.

Scenario A1-85: Only INS (iron and steel) and CPG (chemical products) indus-
tries participate in carbon reduction by 15 % from BAU based on producer-based 
accounting (Ci).
Scenario A2-85: Only INS (iron and steel) and CPG (chemical products) indus-
tries participate in carbon reduction by 15 % from BAU based on trade-adjusted 
accounting (CNi).
Scenario A3-85: Only INS (iron and steel) and CPG (chemical products) industries 
participate in carbon reduction by 15 % from BAU based on commodity-embodied 
accounting (CMi).

where nine regions of world 15 regions given in Table 4 participate in the emission con-
trol agreement.

Similarly, scenario A1-70, A2-70 and A3-70 represent the 30 % carbon reduction cases 
corresponding to A1-85, A2-85 and A3-85.

Scenario B shows how the increase in participation of regions affects the emissions 
and economies. Here, it is assumed that MCM, SAM and IND join the emission control 
agreement. Thus, 12 regions of world 15 regions participate in emission control.

Scenario C evaluates how the participation of energy sector contributes. Here, power 
generation industry joins in addition to the scenario A.

Figures 5 and 6 show the comparison of the global CO2 reduction and the global GDP 
losses and from BAU. It should be noted that the GDP losses tend to be decline after 
2027. It is because that some periods are needed to replace the older plants by new ones, 
since THERESIA incorporates the energy technology replacement dynamics similar to 
the existing bottom-up technology models. These figures suggest that the replacement 
of new technologies can substantially mitigate the economic loss of carbon emission 
constraints but it takes time. However, it is also expected the economic loss will increase 

Table 4  Regional partial participation cases in scenario A

1, participate; 0, not participate

USA MCM BRA SAM WEP EEP FSU AFR JPN CHN ASN IND TME ANZ XAP

1 0 1 0 1 1 1 0 1 1 0 1 0 1 0
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under the more stringent carbon emission policy such as 2.0 or 1.5 °C atmospheric tem-
perature rise target.

It should also be noted that since energy conversion sectors do not participate in emis-
sion agreement in W-85 and W-70 cases, total global carbon emission reductions do not 
reach the target. These figures show some remarkable observations: First, even if participa-
tion of regions is within developed countries, global carbon emission reduction is almost 
same, especially in Ci (producer-based accounting) constraint. Second, Fig.  5 suggests 
that both economic loss and carbon emission reduction are negligible small when carbon 
emission accounting policy employs CNi (trade-adjusted accounting) or CMi (commodity-
embodied accounting) if carbon reduction policy is not stringent. Third, Fig. 6 shows the 
differences in accounting policy tend to decrease as carbon emission target becomes strin-
gent. Fourth, partial participation substantially weaken the carbon emission policy.

Figure 7 shows the comparison of the carbon emission reduction profiles from BAU in 
INS (iron and steel industry) sector and world total, respectively. The emission reduction 
of INS sector in CNi (trade-adjusted accounting) case is apparently smaller than A1 and 
A3. It is also shown that carbon emission of INS sector substantially declines when all 
industries and regions participate in carbon emission policy.

Figure 8 shows the relative carbon emission reductions to BAU. It is shown that car-
bon emission in power generation sector is almost constant among scenarios except 
for C-scenarios (direct carbon emission control for ELC sector) while around 30 % of 
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Fig. 5  Comparison of global CO2 reductions and GDP losses in 15 % reduction cases. a CO2 emission reduc-
tion from BAU: comparison of 15 % reduction cases. b GDP loss from BAU: comparison of 15 % reduction 
cases
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carbon emission of power generation sector is attributed to customer even in W-85 and 
W-70 scenarios. In other words, carbon control policy in only INS and CPG sectors does 
not affect the power generation sector behavior. We cannot hope the indirect effects of 
the carbon control policies when limited sectors participate in the agreement.

Finally, I compare the carbon emissions of INS (iron and steel industry) sector among 
scenarios in Tables 5 and 6 to see how the “carbon leakage” differently appears depending 
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Fig. 6  Comparison of global CO2 reductions and GDP losses in 30 % reduction cases. a CO2 emission reduc-
tion from BAU: comparison of 30 % reduction cases. b GDP loss from BAU: comparison of 30 % reduction 
cases
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on the accounting method. Table 7 shows the world carbon emissions in three account-
ing method in scenario A.

These tables show some interesting findings: First, when one compares the A1-85 sce-
nario, where only Group A regions participate in the carbon emission reduction policy 
to 85 % of BAU based on the A1 (producer-based accounting), world carbon emission 
exceeds 85  %. This suggests the occurrence of “carbon leakage.” Second, when Group 
A regions agree with the same carbon emission policy based on A2 (trade-adjusted 
accounting), both the in-group and the global carbon emissions hardly decrease while 
CNi meets the carbon emission target. In this case, export of carbon-intensive products 
compensates the domestic carbon emission reduction. Thus, one can observe that the 
accounting policy on “producer based” could cause “carbon import” and that, on the 
contrary, carbon control on “trade-adjusted” or “demand-based” emission accounting 
may cause larger “carbon export” effects which can harm the global carbon emission 
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1997 2007 2017 2027 2037 2047

Carbon emission reduc�on in ELC sector
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Fig. 8  Relative carbon emission reductions to BAU in power generation sector

Table 5  Carbon emissions of INS (iron and steel industry) sector in Group A regions (in bil‑
lion tons of carbon)

Ci_GroupA CNi_GroupA Ci_GroupA (%) CNi_GroupA (%) Ci_GroupA (%) CNi_GroupA (%)

1997 0.313 0.311 100.0 100.0 100.0 100.0

2007 0.618 0.552 95.0 101.0 100.2 105.5

2017 1.022 0.894 85.0 87.1 99.8 84.9

2027 1.295 1.168 85.0 84.0 101.5 83.9

2037 1.389 1.213 85.0 88.3 102.1 85.0

2047 1.230 1.123 85.0 86.3 97.2 85.0

Table 6  Carbon emissions of  INS (iron and steel industry) sector in world total (in billion 
tons of carbon)

BAU (Gt-C) A1-85 A2-85

Ci_World CNi_World Ci_World (%) CNi_World (%) Ci_World (%) CNi_World (%)

1997 0.343 0.343 100.0 100.0 100.0 100.0

2007 0.669 0.669 95.2 95.2 99.9 99.9

2017 1.116 1.113 86.3 86.5 99.5 99.8

2027 1.434 1.436 86.6 86.6 101.2 101.0

2037 1.559 1.561 86.8 86.8 101.7 101.6

2047 1.397 1.398 86.7 86.7 97.3 97.3
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control target. It should be noted that the above two “leakage” patterns disappear when 
carbon emission target is agreed by all countries. Third, the outcome of partial partici-
pation seems small. These findings suggest how the carbon control measures should be 
implemented.

6 � Conclusion
This study proposes two alternatives for the evaluation of indirect responsible carbon 
emission by sector. I described a method to evaluate the partial participation in terms 
of “region” and “sector.” The allocation of carbon emission between energy conversion 
sector and consumers is also shown. Then, the effects of carbon emission accounting are 
evaluated based on the expanded THERESIA model. The findings are summarized as 
follows:

First, the effects of sectoral emission control under partial participation are small, but 
“producer-based” accounting seems to suppress the carbon emission in total.

Second, trade-adjusted carbon emission accounting seems to cause larger “carbon 
export” than the “carbon import” which appears in the “producer-based” accounting.

The “carbon leakage” or “indirect carbon import” issue has often been pointed out and 
thus demand-side-based emission accounting is prosed as an alternative. However, “car-
bon export” appears more seriously in this study. Since “carbon leakage” might promote 
foreign direct investment and technology transfer comparing with “carbon export” situa-
tion, it is still a question whether the demand-based accounting is more preferable to the 
conventional producer-based one. Further research is needed to compare these account-
ing measures.

The next stage of this study is how the difference in emission allocation options affects 
the industry and technology allocation by the carbon emission control policy.
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