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1  Background
Graph partitioning methods or clustering methods in general have been widely used 
for understanding and visualizing fundamental features of social and economic net-
work complexity, e.g., Newman and Girvan (2004), Kagawa et al. (2013a, b), Liang et al. 
(2015). A striking environmental study has been provided by Kagawa et al. (2015); the 
authors identified CO2 emission clusters within global supply-chain networks formed 
by the final demand impulse of a specific final product and argued how the identified 
emission clusters have contributed to increasing CO2 emission transfers and have grown 
over time [see also Davis et  al. (2011) and Peters et  al. (2011) for the analysis of CO2 
emission transfers]. The authors applied the nonnegative matrix factorization (NMF) 
approach  (Lee and Seung 1999) and obtained certain clusters whose normalized cut 
value (Ncut value) is minimized, which implies that the obtained clusters could best 
explain the environmentally important supply chains (Kagawa et al. 2015).

Although Kagawa et  al. (2015) provided important emission clusters for climate 
change mitigation, there is a crucial problem that the obtained results highly depend 
on the employed algorithms and parameters. To see the problem, we show an example: 
Suppose that we apply a typical clustering algorithm such as the K-means method (Mac-
Queen et al. 1967) for the analysis. By setting the parameter K = 10, we can obtain a 
set of 10 clusters, but if we instead set the parameter K = 11, the obtained 11 clusters 
could include very different sectors from the ones of K = 10. In such a situation, which 
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“clusters” really reflect the actual economic structure? Or which “clusters” are plausible 
for the analysis? We have the same problem for not only the value of K but also the many 
other parameters used in the employed algorithms. It is worth noting that the K-means 
algorithm is indeed used in the NMF method.

The same problem is seen for the quality of the datasets. Economic network data such 
as input–output tables usually contain errors, or they always just constitute an approxi-
mation, which is a central issue in input–output analysis (e.g., Dietzenbacher 1995, 
2006). Due to the errors, the same problem mentioned above appears in cluster analysis. 
That is, the clustering analysis could be very sensitive to the employed algorithms and 
datasets. In fact, the actual datasets used for constructing the supply-chain networks 
of Kagawa et  al. (2015) are estimations derived from the multi-regional input–output 
framework (e.g., Lenzen et al. 2012; Dietzenbacher et al. 2013). If the employed cluster-
ing technique is quite sensitive to changes in the input–output data, which is our case, 
we need to be careful to claim that the resulted clusters are plausible.

This paper investigates this problem and proposes a method to obtain clusters that are 
“stable” with respect to errors or noise in the data and parameters of the algorithm. That 
is, even if we slightly perturb the values in datasets, clusters obtained by our method still 
have a good Ncut value; even though the original data may contain errors or noise, the 
obtained clusters are still reliable if the noise is small enough. The idea of our approach 
is rather simple and is based on simulations. It can be interpreted as applying a Monte 
Carlo-type simulation to obtain stable clusters in terms of perturbations by noise in data 
or choices of parameters. We also propose two criteria and a diagram based on the cri-
teria to guarantee the robustness of the obtained clusters. The details will be described 
in Sect. 2. It should be noted that, due to its generality, this diagram could provide a new 
guideline to measure the reliability of analysis results, used in various fields where clus-
tering analyses are applied, such as economic and social networks.

As a case study, we focused on an adjacency matrix obtained by using a multi-regional 
input–output analysis (Kagawa et al. 2015). The proposed two criteria were applied to 
obtain robust CO2 emission clusters within global supply-chain networks. The robust-
ness and performance of our clustering results are compared to those of Kagawa et al. 
(2015). We particularly evaluate the difference in terms of cluster compositions, which 
carry strong environmental implications. The remaining sections are as follows: Sec-
tion 2 describes the methodology in this study, Sect. 3 provides a numerical example, 
Sect.  4 presents the obtained empirical results and discussions, and Sect. 5 concludes 
this paper.

2 � Methods
2.1 � Constructing an adjacency matrix

An economic transaction between geographically distributed industries is defined as 
Z = (Zrs

ij ) (i, j = 1, . . .M; r, s = 1, . . . ,N ), which represents a product sale from indus-
try i in country r to industry j in country s. Here, M is the number of industries and N 
is the number of countries. If geographical input coefficients are defined by A = (arsij ) 
with arsij = Zrs

ij /x
s
j , where xsj  denotes domestic output of industry j in country s, the widely 

used interregional input–output (IRIO) model (e.g., Miller and Blair 2009) can be for-
mulated as
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or x = Ax + f  in matrix notation, where x = (xri ), f = (
∑N

s=1 f
rs
i ), and 

f rsi (i = 1, . . . ,M; r, s = 1, . . . ,N ) represents final demand from industry i of country r 
to country s.

Solving the IRIO model in Eq.  (1) yields x = (I− A)−1f = Bf . Here I is the identity 
matrix, and B = (I− A)−1 is the direct and indirect requirement matrix, in which each 
element brsij  represents how many units of the products of industry i in country r are 
needed to produce one unit of the products of industry j in country s.

Using the above IRIO framework, we can further formulate the unit structure model 
based on the IRIO model (e.g., Kagawa et al. 2015):

where bsj can be easily obtained as the ((s − 1)M + j)-th column vector in the direct 
and indirect requirement matrix B, and f sj  is the final demand of products produced by 
industry j in country s. The matrix Xs

j  shows the economic transactions between geo-
graphically distributed industries that are triggered by the final demand on industry j 
located in country s.

If the direct emission coefficient vector showing CO2 emissions generated per unit of 
output of industry i in country r is defined as α = (αr

i ), the CO2 emissions embedded in 
the economic transactions are obtained as

where diag represents the diagonalization. Using this formulation, we define adjacency 
matrix W =

(
wrs
ij

)
, where

2.2 � Clustering input–output analysis

A graph is a discrete structure that consists of vertices and edges that connect two ver-
tices. In the context of economic analysis, a vertex and an edge correspond to a sector 
and a transaction between the corresponding two sectors, respectively. Graph clus-
tering concerns finding for a graph similar vertices that can be arranged in dissimilar 
groups. This problem has multiple variants, algorithms, and applications; see Schaef-
fer (2007). Spectral and NMF-based clusterings have become popular in recent years, 
especially in the field of machine learning, e.g., Shi and Malik (2000), Ng et al. (2002), 
Kannan et al. (2004), Ding et al. (2005), Von Luxburg (2007), Zhang and Jordan (2008). 
However, spectral clustering can be traced back to the field of computer science for the 
graph partitioning problem, due to the work of Donath and Hoffman (1973) and Fiedler 
(1973).

Suppose an undirected weighted network G = (V ,E) of order n = |V | with edge 
weights wuv. In the context of clustering IO analysis (CIOA), a vertex u corresponds 
to a sector of an industry i in a country r. We denote this by u = (i, r). Here, V and E, 

(1)
xri =

N∑

s=1

M∑

j=1

arsij x
r
i +

N∑

s=1

f rsi ,

(2)Xs
j = Adiag(bsj f

s
j ),

(3)G =
(
grsij

)
= diag(α)Xs

j ,

(4)wrs
ij =

{
0 i = j, r = s,
grsij + gsrji otherwise.
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respectively, represent the set of all the sectors and the set of all the transactions between 
two sectors, and |V | = n = M × N . The edge weights represent the amounts of CO2 
emissions associated with the corresponding transactions. It is also possible to consider 
unweighted graphs with zero-one edge weights. A central instrument of the spectral and 
NMF clustering framework is the use of Laplacian matrices, which are matrix repre-
sentations of graphs. If W = (wuv)1≤u,v≤n is the adjacency matrix of the network G and 
D = diag(d) is the diagonal degree matrix of G, with d = (du)1≤u≤n = (

∑n
v=1 wuv)1≤u≤n 

being the vector of vertices’ degrees, then the Laplacian matrix of G can be defined as 
L = D−W. The normalized version of L is given by D− 1

2LD− 1
2 (Shi and Malik 2000; Ng 

et al. 2002).
Such clustering is considered graph partitioning. A family of subsets U1, . . . ,Uk of set 

V is called a (k-)partition of V if 
⋃k

p=1Up = V  and Up ∩Uq = ∅ for 1 ≤ p, q ≤ k , p �= q . 
A graph partition is a partition of vertices. The objective is to minimize for each clus-
ter its total weights to the rest of the graph, which is called cut in graph theory and 
expressed as cut(U , Ū) =

∑
u∈U ,v∈Ū wuv for a subset U ⊂ V  of vertices and its com-

plement Ū . In this vein, Shi and Malik (2000) introduced the normalized cut criterion, 
abbreviated as Ncut, that produces when it is minimized clusters of reasonable sizes. For 
k partition U1,U2, . . . ,Uk of V, the Ncut is defined as

where the denominators 
∑

u∈Up
du =

∑
u∈Up ,v∈V

wuv are implicitly implementing the 
objective of increasing the connectivity within clusters. Graph clustering into k clusters 
can be formulated as the following combinatorial problem:

Unfortunately, this problem has been proven to be NP-hard (Shi and Malik 2000), unlike 
the abovementioned “min-cut” problem, which can be solved efficiently. However, prob-
lem (5) can be converted to matrix form as a minimization of the Rayleigh quotient (Shi 
and Malik 2000), which can be in its turn expressed as a trace matrix (Ding et al. 2005; 
Von Luxburg 2007; Zhang and Jordan 2008; Ding et  al. 2008). For instance, using the 
notation of Ding et al. (2005), problem (5) becomes

where H = (h1,h2, . . . ,hk) is the (n× k) matrix defined by hi = D
1
2 q(i)/||D

1
2 q(i)||. Here, 

HT is the transpose matrix of H, and q(i) = (q
(i)
1 q

(i)
2 · · · q

(i)
n )T is the n-dimensional indi-

cator vector of the cluster Ui; q(i)u = 1 if a vertex u belongs to cluster Ui, 0 otherwise. 
Note that H is a nonnegative matrix; that is, all the elements of H are nonnegative.

Problem (6) can be rewritten in an easily solvable form, specifically, accordingly to 
Ding et al. (2005),

Ncut(U1,U2, . . . ,Uk) =

k∑

p=1

cut(Up, Ūp)∑
u∈Up

du
,

(5)
min

U1,U2,...,Uk

Ncut(U1,U2, . . . ,Uk)

subject to U1 ∪ U2 ∪ · · · ∪ Uk = V and Ui ∩ Uj = ∅ (i �= j).

(6)min
H

Tr
(
HT D− 1

2LD− 1
2 H

)
subject to HTH = Ik ,
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where ||.||F is the Frobenius matrix norm. In conformity with the algorithm of Lee and 
Seung (2001), problem (7) can be solved using update rules, which are iterative improve-
ments converging to local optima solutions. In this study, we make use the following rule 
given by Ding et al. (2005) and used by Kagawa et al. (2013a, 2015):

where β is a parameter such that 0 < β ≤ 1. We set β = 0.5 and initialize the matrix H 
according to the previous studies (Ding et  al. 2008; Kagawa et  al. 2013a, 2015). After 
iteratively applying (8), an approximated real-valued solution matrix Ĥ is reached. 
Although we can expect to obtain Ĥ in realistic running time, Ĥ itself does not give any 
clustering due to the non-integer property. To obtain a concrete clustering, we apply the 
well-known and well-used K-means algorithm, which we call the rounding step in our 
algorithm and explain below.

The K-means algorithm introduced by MacQueen et al. (1967) is one of the most pop-
ular hierarchical clustering methods. This algorithm starts by selecting k initial clusters 
identified by their cluster centers and then iteratively refining them as follows. Given 
a target dataset {d1, d2, . . . , dn} to be clustered, each iteration of the algorithm aims to 
minimize the within-cluster sum of squared distance, which is expressed as

where mp is the center of the cluster Up, which is defined as the mean value of the ele-
ments belonging to Up, i.e., mp =

∑
i∈Up

di/|Up|, and ||.|| is a norm function on the 
dataset space. Minimizing this distance involves assigning each data instance di to its 
closest cluster, i.e., Up such that the distance ||di −mp|| is minimum. The mp centers are 
updated thereafter. The final clusters describe a partition of the dataset. This algorithm 
converges once no further assignment of instances is applied. The K-means can actually 
be proven to converge to a local minimum of expression (9) (Bottou and Bengio 1994). 
However, this algorithm suffers from several drawbacks, mainly its sensitivity to the 
initial conditions, which can lead to potentially misleading results (Bradley and Fayyad 
1998). This issue is actually common among hill-climbing algorithms, where according 
to Duda et al. (1995): “different starting points can lead to different solutions and one 
never knows whether or not the best solution has been found.” Thus, a bad choice of the 
initial cluster centers can easily converge to a poor cluster assignment. A second issue 
concerns the best value of the parameter k to be chosen. A bad choice here also can lead 
to poor results.

The basic steps of the NMF method presented in this section are summarized as the 
following algorithm.

(7)min
H≥0

∥∥∥D− 1
2WD− 1

2 −HHT
∥∥∥
2

F
,

(8)hij ← hij

(
1− β + β

(D− 1
2WD− 1

2 )ij

(HHTH)ij

)
,

(9)

k∑

p=1

∑

i∈Up

||di −mp||
2,
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2.3 � Simulation module

This section analyzes the rounding step of the NMF algorithm described in the previ-
ous section. A sampling-based simulation procedure is performed in the rounding step, 
instead of running one instance of the K-means algorithm on the matrix Ĥ, as prescribed 
in the NMF algorithm. In order to simulate uncertain environments for the input cluster-
ings, which will be introduced in Table 1, small perturbations in W = (wuv)1≤u,v≤n, the 
adjacency matrix of the network G, are generated N times. Consequently, perturbed adja-
cency matrices can be obtained as W1,W2, . . . ,WN , such that N denotes the number of 
the samples from now on. To assess the performance of a clustering C = {U1,U2, . . . ,Uk} , 
obtained from the “initial” adjacency matrix W0 = W, we propose the modified Ncut 
criterion as follows: Ncut(C,WI ) =

∑k
p=1

(∑
u∈Up

∑
v/∈Up

xuv/
∑

u∈Up

∑
v∈V xuv

)
. It 

should be noted that this modified Ncut value represents the goodness achieved in a 
network that includes a small amount of noise in the edge weights, i.e., the perturbed 
adjacency matrix WI = (xuv)1≤u,v≤n, under the given clustering C. Thus, under the same 
clustering C, this Ncut criterion is well distinguished for different perturbed matrices 
W1,W2, . . . ,WN .

Table  1 illustrates the simulation module developed in this study. First, we endog-
enously determine the matrix Ĥ by applying NMF to the initial adjacency matrix W0 
and subsequently repeatedly apply the K-means algorithm to the n-rows of the matrix 
Ĥ , M times. The clusterings C1, C2, . . . , CM, termed input clusterings, are thus obtained. 
These clusterings are assigned differently due to the instability of repeatedly conducting 
K-means rounding. The perturbation scenario (II ) implies that the matrix WI is used for 

Table 1  Description of the simulation module for the input clusterings X = {C1, C2, . . . , CM}
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the Ncut computation. We suppose that the perturbed matrices W1,W2, . . . ,WN take 
values from the following uncertainty set:

where ξ is a noise magnitude parameter, which usually takes small values, e.g., 0.1. From 
the set U, deviations are symmetric around the values of the initial matrix W0, such that 
each element (x)uv of the randomly perturbed adjacency matrices is limited within the 
interval 

[
(1− ξ)wuv , (1+ ξ)wuv

]
. In practice, to obtain the matrices W1,W2, . . . ,WN , 

we draw N independent and identically distributed samples from the set U.
Two measures of robustness are introduced in the simulation module, RX

1  and RX

2 , 
such that the set X = {C1, C2, . . . , CM} denotes the M input clusterings. The first meas-
ure, RX

1 , reports for a given clustering C ∈ X  the fractional degree that it is the best 
clustering within X  across the perturbation scenarios. For instance, C being the best 
clustering within X  for the perturbation scenario (II ) means that C yields the smallest 
Ncut value among the Ncut values computed using the M clusterings of X  and the per-
turbed adjacency matrix WI, i.e., C ∈ arg min

D∈X
Ncut(D,WI ). We introduce the indicator 

function IX (C,WI ) that takes value one if C is the best clustering within X  for perturbed 
matrix WI, zero otherwise. The indicator function is expressed as follows:

We can formulate the probability of appearance or being best, i.e., robustness meas-
ure, for a given clustering C over the initial and the perturbed N matrices as R̂X

1 (C) as 
follows:

This expression is obviously dependent on the number of samples N. Thus, the meas-
ure expressed by (12) can be viewed as an estimation of the accurate measure RX

1 . We 
use the caret symbol ( ̂ ) to indicate this approximation. The accurate measure RX

1 (C) is 
assumed to be reached for an infinite number of samples: R̂X

1 (C) −−−−→
N→∞

RX

1 (C).

The second measure, RX

2 (C), reports the average value of the performance ratio. We 
define the performance ratio of a clustering C ∈ X  under the perturbed adjacency matrix 
WI as the ratio of the Ncut value of C to the smallest Ncut value computed for the per-
turbed matrix WI. The ratio expression for a given clustering C and a given matrix WI is 
given by

It should be noted that if the given clustering C yields the smallest Ncut value under 
the perturbed adjacency matrix WI, the performance ratio takes value one. Using the 
performance ratios of a given clustering C, we can formulate the average of performance 

(10)U = {(xuv) ∈ R
n×n : |xuv − wuv| ≤ ξ |wuv|, ∀u, v ∈ [|1, n|]},

(11)IX (C,WI ) =

{
1, if C ∈ arg min

D∈X
Ncut(D,WI )

0, otherwise
.

(12)R̂X

1 (C) =
1

N + 1

N∑

I=0

IX (C,WI ).

(13)
Ncut(C,WI )

minD∈X {Ncut(D,WI )}
.
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ratios, i.e., robustness measure, for C over the initial and the perturbed N matrices as 
R̂X

2 (C) as follows:

Here, R̂X

2 (C) ranges within the interval between 0 and 1. If R̂X

2 (C) takes value one, the 
given clustering C always gives the smallest Ncut value under the initial and the per-
turbed adjacency matrices. Any lower value of R̂X

2 (C) implies that the given clustering 
C does not yield a better graph partition. The measure R̂X

1 (C) is always between 0 and 
1. Both measures can be then seen as percentages. Note that the caret symbol is used 
also for measure RX

2 , due to the dependence on the number of samples N. The more a 
clustering C is robust within X , the higher are the estimated values of RX

1 (C) and RX

2 (C). 
To see why both measures are useful, we provide a numerical example with a focus with 
simplified network data in the next section.

3 � Numerical example
We use the following simplified adjacency matrix:
 
 
 
 
 
 
 
 

W0 =




0.000 10.466 0.249 0.328 0.264 4.198 0.249 0.318 0.127 4.091 0.176 0.228 0.417 0.189 0.267 0.461
10.470 0.000 10.840 10.950 15.000 12.750 10.980 13.260 11.590 11.720 10.480 14.010 13.750 11.720 11.640 13.270
0.249 10.836 0.000 0.355 0.157 0.239 0.304 0.121 0.166 0.175 3.039 0.301 0.256 4.094 4.218 0.197
0.328 10.947 0.355 0.000 0.336 0.406 2.353 0.335 2.555 0.210 0.189 0.375 3.893 0.176 0.159 3.215
0.264 15.002 0.157 0.336 0.000 0.082 0.407 2.983 0.104 0.441 0.348 4.132 0.332 0.258 0.330 0.182
4.198 12.746 0.239 0.406 0.082 0.000 0.254 0.320 0.251 5.245 0.537 0.244 0.428 0.356 0.558 0.394
0.249 10.978 0.304 2.353 0.407 0.254 0.000 0.325 2.069 0.094 0.130 0.155 3.185 0.103 0.296 3.811
0.318 13.261 0.121 0.335 2.983 0.320 0.325 0.000 0.236 0.465 0.240 3.168 0.363 0.233 0.200 0.338
0.127 11.585 0.166 2.555 0.104 0.251 2.069 0.236 0.000 0.283 0.167 0.098 3.185 0.131 0.184 3.429
4.091 11.716 0.175 0.210 0.441 5.245 0.094 0.465 0.283 0.000 0.082 0.222 0.288 0.271 0.391 0.444
0.176 10.476 3.039 0.189 0.348 0.537 0.130 0.240 0.167 0.082 0.000 0.127 0.285 3.630 3.658 0.070
0.228 14.006 0.301 0.375 4.132 0.244 0.155 3.168 0.098 0.222 0.127 0.000 0.107 0.152 0.239 0.310
0.417 13.751 0.256 3.893 0.332 0.428 3.185 0.363 3.185 0.288 0.285 0.107 0.000 0.251 0.328 3.823
0.189 11.716 4.094 0.176 0.258 0.356 0.103 0.233 0.131 0.271 3.630 0.152 0.251 0.000 3.692 0.443
0.267 11.640 4.218 0.159 0.330 0.558 0.296 0.200 0.184 0.391 3.658 0.239 0.328 3.692 0.000 0.219
0.461 13.270 0.197 3.215 0.182 0.394 3.811 0.338 3.429 0.444 0.070 0.310 3.823 0.443 0.219 0.000




Using this initial adjacency matrix, W0, we can depict a network with 16 vertices. 
A problem is how to find the robust clusterings from the network data. Following 
Ding et  al. (2005) and Kagawa et  al. (2013a, b), the clustering method based on the 
NMF of the normalized adjacency matrix is useful for achieving this goal. We apply 
the NMF method to the normalized adjacency matrix D−1/2W0D

−1/2 as follows: 

(14)R̂X

2 (C) = 1/
( 1

N + 1

N∑

i=0

Ncut(C,WI )

minD∈X {Ncut(D,WI )}

)
.
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Here, it should be noted that the matrix size of Ĥ is 16 by 3. From this matrix, we obtain 
the following 16 feature vectors corresponding to Ĥ row vectors:

We applied the K-means method using these 16 feature vectors ten times and obtained 
the ten clusterings listed in Table 2.

We notice in the case of Table 2 that the clusterings C1 and C5 describe the same clus-
ter assignment, and that this is also true for C6 and C10. Our interest is which clustering 
among the eight different cluster assignments gives the best graph partition. If we exam-
ine the Ncut values for the initial adjacency matrix W0, the best performance within our 

D
−1/2

W0 D
−1/2 =




0.000 0.165 0.011 0.014 0.011 0.175 0.011 0.014 0.005 0.176 0.008 0.010 0.016 0.008 0.011 0.018

0.165 0.000 0.161 0.159 0.221 0.184 0.164 0.205 0.173 0.176 0.161 0.212 0.183 0.171 0.168 0.178

0.011 0.161 0.000 0.014 0.006 0.009 0.012 0.005 0.007 0.007 0.127 0.012 0.009 0.162 0.165 0.007

0.014 0.159 0.014 0.000 0.013 0.016 0.093 0.014 0.101 0.008 0.008 0.015 0.138 0.007 0.006 0.114

0.011 0.221 0.006 0.013 0.000 0.003 0.016 0.124 0.004 0.018 0.014 0.168 0.012 0.010 0.013 0.007

0.175 0.184 0.009 0.016 0.010 0.000 0.010 0.013 0.010 0.207 0.022 0.010 0.015 0.014 0.021 0.014

0.011 0.164 0.012 0.093 0.013 0.010 0.000 0.014 0.084 0.004 0.005 0.006 0.115 0.004 0.012 0.139

0.014 0.205 0.005 0.014 0.010 0.013 0.014 0.000 0.010 0.020 0.010 0.135 0.014 0.004 0.008 0.013

0.005 0.173 0.007 0.101 0.207 0.010 0.084 0.010 0.000 0.012 0.007 0.004 0.116 0.010 0.007 0.125

0.176 0.176 0.007 0.008 0.022 0.207 0.004 0.020 0.012 0.000 0.003 0.009 0.010 0.005 0.015 0.016

0.008 0.161 0.127 0.008 0.010 0.022 0.005 0.010 0.007 0.003 0.000 0.005 0.011 0.011 0.148 0.003

0.010 0.212 0.012 0.015 0.168 0.010 0.006 0.135 0.004 0.009 0.005 0.000 0.004 0.149 0.010 0.011

0.016 0.183 0.009 0.138 0.012 0.015 0.115 0.014 0.116 0.010 0.011 0.004 0.000 0.006 0.011 0.124

0.008 1.171 0.162 0.007 0.010 0.014 0.004 0.010 0.005 0.011 0.149 0.006 0.009 0.000 0.142 0.016

0.011 0.168 0.165 0.006 0.013 0.021 0.012 0.008 0.007 0.015 0.148 0.010 0.011 0.142 0.000 0.008

0.018 0.178 0.007 0.114 0.007 0.014 0.139 1.013 0.125 0.016 0.003 0.11 0.124 0.016 0.008 0.000




≈




0.041 0.000 0.321

0.350 0.308 0.327

0.001 0.345 0.028

0.301 0.038 0.004

0.110 0.088 0.173

0.041 0.015 0.340

0.296 0.040 0.000

0.109 0.076 0.168

0.296 0.038 0.000

0.037 0.000 0.345

0.000 0.328 0.036

0.106 0.083 0.173

0.326 0.045 0.004

0.001 0.346 0.035

0.000 0.344 0.043

0.329 0.039 0.006




×




0.041 0.350 0.001 0.301 0.110 0.041 0.296 0.109 0.296 0.037 0.000 0.106 0.326 0.001 0.000 0.329

0.000 0.308 0.345 0.038 0.088 0.015 0.040 0.076 0.038 0.000 0.328 0.083 0.045 0.346 0.344 0.039

0.321 0.327 0.028 0.004 0.173 0.340 0.000 0.168 0.000 0.345 0.036 0.173 0.004 0.035 0.043 0.006




= ĤĤ′

y1 = (0.041, 0.000, 0.321); y2 = (0.350, 0.308, 0.327); y3 = (0.001, 0.345, 0.028);

y4 = (0.301, 0.038, 0.004); y5 = (0.110, 0.088, 0.173); y6 = (0.041, 0.015, 0.340);

y7 = (0.296, 0.040, 0.000); y8 = (0.109, 0.076, 0.168); y9 = (0.296, 0.038, 0.000);

y10 = (0.037, 0.000, 0.345); y11 = (0.000, 0.328, 0.036); y12 = (0.106, 0.083, 0.173);

y13 = (0.326, 0.045, 0.004); y14 = (0.001, 0.346, 0.035); y15 = (0.000, 0.344, 0.043);

y16 = (0.329, 0.039, 0.006)



Page 10 of 29Rifki et al. Economic Structures  (2017) 6:3 

input clusterings X = {C1, . . . , C10} is exhibited by clustering C3 according to the follow-
ing table:

Clustering C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Ncut(C,W0) 1.611 0.556 0.551 1.09 1.611 1.412 0.889 1.791 1.225 1.412

In order to draw the perturbed adjacency matrices, we first set the noise magnitude 
parameter, e.g., ξ = 0.5. We have sampled the following perturbed adjacency matrix 
WI from the set U given in expression (10):

WI =




0.001 10.789 0.271 0.381 0.368 3.085 0.145 0.388 0.140 3.397 0.174 0.327 0.521 0.179 0.205 0.534
6.386 0.001 16.251 14.012 9.982 11.930 14.839 16.849 16.659 16.750 12.510 10.320 19.125 9.537 6.226 10.406
0.300 6.503 0.001 0.303 0.125 0.237 0.183 0.124 0.190 0.136 3.210 0.386 0.306 3.120 2.384 0.139
0.459 13.928 0.483 0.001 0.389 0.383 1.414 0.238 2.283 0.114 0.127 0.350 5.541 0.173 0.096 4.308
0.296 11.070 0.133 0.388 0.001 0.061 0.308 4.271 0.145 0.339 0.270 3.791 0.318 0.148 0.438 0.249
5.599 11.842 0.194 0.372 0.051 0.001 0.319 0.423 0.285 5.369 0.442 0.227 0.401 0.330 0.335 0.513
0.335 5.908 0.261 1.897 0.382 0.374 0.001 0.210 2.791 0.063 0.081 0.098 1.888 0.083 0.368 3.114
0.430 10.070 0.081 0.290 3.450 0.268 0.170 0.001 0.286 0.447 0.297 2.776 0.414 0.190 0.109 0.316
0.065 12.180 0.237 1.647 0.069 0.126 2.406 0.162 0.001 0.406 0.147 0.115 2.460 0.074 0.245 4.841
4.261 11.207 0.155 0.176 0.374 3.433 0.110 0.468 0.214 0.001 0.072 0.260 0.263 0.321 0.228 0.250
0.118 11.475 4.469 0.191 0.382 0.582 0.067 0.333 0.104 0.067 0.001 0.145 0.207 1.976 2.955 0.076
0.188 8.264 0.251 0.215 2.442 0.329 0.205 3.806 0.092 0.253 0.167 0.001 0.157 0.191 0.333 0.273
0.242 11.988 0.378 4.734 0.215 0.271 4.094 0.263 4.358 0.273 0.318 0.152 0.001 0.249 0.347 5.340
0.146 10.752 5.464 0.186 0.339 0.322 0.143 0.226 0.173 0.235 3.868 0.105 0.131 0.001 3.320 0.319
0.217 6.439 4.882 0.212 0.454 0.682 0.396 0.221 0.248 0.244 4.061 0.127 0.204 2.069 0.001 0.202
0.303 7.390 0.211 4.056 0.164 0.432 4.447 0.406 3.398 0.532 0.066 0.352 2.882 0.617 0.293 0.000




.

 
 
 

Table 2  Clusterings resulting from applying 10 K-means instances to the feature vectors, 
y1, y2, . . . , y16, associated with the simplified network example
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For this specific perturbed adjacency matrix, clustering C2 is deemed to be the best clus-
tering according to the Ncut results, which are shown in the following table:

Clustering C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Ncut(C,WI) 1.615 0.550 0.564 1.170 1.615 1.334 0.909 1.738 1.315 1.334

We could thus confirm that random noise in the edges of this simplified network 
clearly affects the choice of the best clustering. Next, we consider which among 

C2 and C3 is a more reliable clustering. To answer this question, we proceed by exam-
ining the values of the indicator function and the performance ratio, which are given, 
respectively, in expressions (11) and (13). Our proposed robustness measures are entirely 
based on these values. For the current perturbed matrix WI, the values of the indicator 
function and the performance ratio are shown in the following table:

Clustering C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

IX (C,WI) 0 1 0 0 0 0 0 0 0 0

Performance 2.933 1 1.024 2.124 2.933 2.422 1.651 3.156 2.387 2.422

Ratio

The indicator function tacked on clusterings can be intuitively derived. It merely indi-
cates through a 0–1 binary representation which clusterings yield the best performance 
for the current perturbation scenario. In the current matrix WI, clustering C2 obviously 
takes value one, while the other cluster assignments take value zero. For the perfor-
mance ratio, the emphasis is instead put on the relative span to the best clusterings; a 
smaller value of the ratio indicates a better clustering. The clusterings C3 and C7 seem to 
be better in this regard for the perturbed matrix WI.

Our proposed simulation module iteratively draws a perturbed matrix WI from the set 
U and computes the values of the indicator function and the performance ratio for the 
input clusterings and the matrix WI. The robustness measures R̂X

1  and R̂X

2  as explained 
in the previous section are averages of these iteratively computed values. The following 
table shows the results we obtained for the current simplified network when the sample 
size is set to N = 100 perturbation scenarios:

Clustering C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

R̂
X

1 (C)
0 0.247 0.752 0 0 0 0 0 0 0

R̂
X

2 (C)
0.333 0.985 0.996 0.492 0.333 0.384 0.611 0.304 0.443 0.384

According to both robustness measures, clustering C3 performs better throughout the 
perturbation scenarios. However, C3 is closely followed by clustering C2 according to 
measure R̂X

2 , even if in terms of measure R̂X

1  clustering C2 appears to be the best for only 
24.7% of the randomly perturbed adjacency matrices.
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4 � Empirical results
In this section, we introduce the experiment scheme that we designed in order to obtain 
clusterings that not only are robust as shown in the simulation module of Sect. 2.3 but 
also have a good enough normalized cut performance. Subsequently, the empirical 
results of Kagawa et al. (2015) are discussed and compared to those of the experiment 
run on the same datasets.

4.1 � Experiment scheme

Robustness and performance are conflicting objectives. In order to not sacrifice the per-
formance while finding robust clusterings, we incorporate the simulation module in the 
bigger experiment scheme shown in Fig. 1. Prior to starting the experiment, we apply the 
NMF method to the initial adjacency matrix in order to obtain the approximate matrix 
Ĥ, which has been described in Sect.  2.2. Our experiment is iterative. It starts by ini-
tializing the two clusterings CR1 and CR2 that are the output of the experiment, which 
are the overall best clusterings according to respective measures RX

1  and RX

2  . Cluster-
ings Csimul

R1
 and Csimul

R2
 are similarly top clusterings, but only for one simulation run. 

Clusterings CR1 and CR2 are initially set by random initializations of the K-means algo-
rithm applied to matrix Ĥ. The experiment continues by generating M clusterings, using 
same initialization process as for CR1 and CR2, to construct the set of input clusterings 
X = {CR1 , CR2 , C1, C2, . . . , CM}. Afterward, the simulation module of Table  1 is per-
formed on the set X . The best resulting clusterings Csimul

R1
 and Csimul

R2
 thereafter become 

CR1 and CR2, respectively. The set X  and the simulation are iteratively computed. Conver-
gence is reached when the same Csimul

R1
 and Csimul

R2
 are obtained for a number of consecu-

tive iterations. In our study, we choose a minimum of five iterations. Iterative schemes 
such as ours are widely used for practical solving of optimization problems. The basic 
idea is to continuously refine the approximate solutions. For instance, the various meta-
heuristic solvers such as genetic algorithms, simulated annealing, and iterated local 
search could be mentioned (Gendreau and Potvin 2010).

4.2 � Results and discussion

Kagawa et al. (2013a, b) have been among the first to apply clustering methods to envi-
ronmental analysis of economic systems. Their approach connects input–output mod-
els to techniques of network partition. As mentioned in introduction, highly important 
clusters in terms of CO2 emissions have been identified by Kagawa et al. (2015). While 

generate
CR1 ,CR2

Input: the
matrix Ĥ

generate M
clusterings

run the simulation module on
X = {CR1 ,CR2 ,C1, ...,CM}

CR1 = Csimul
R1

CR2 = Csimul
R2

CR1 CR2

R̂X
1 - -

R̂X
2 - -

(final results)

C1,C2, ...,CM Csimul
R1

,Csimul
R2

until convergence

Fig. 1  Flowchart of the experiment scheme
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China in 2009 was the largest emitter of CO2 production-based emissions (Kagawa et al. 
2015), the authors’ goal was then to identify which country contributed most to these 
emissions and through which supply chains. To quantify CO2 intensity for a cluster, the 
within-cluster sum is used. This is defined for a cluster Up of a supply-chain network with 
the adjacency matrix W = (wuv)1≤u,v≤n as the summation 

∑
u∈Up

∑
v∈Up

wuv.
In Kagawa et al. (2015), it was found among the 4756 industry clusters induced by the 

final demand of various good and services in the five developed countries of the USA, 
the UK, Germany, France, and Japan that both the US construction industry and the 
US transport equipment industry generate prominent Chinese clusters that are among 
the clusters with the 15th highest within-cluster sums. These two Chinese clusters have 
nevertheless the highest annual growth rates (also within the top 15), equal to 57.5 and 
41.7% for US construction and transport equipment demands, respectively. In the top 15 
clusters, there is only one other Chinese cluster, that one induced by the Japanese con-
struction demand, but this cluster has a lower growth rate and a smaller within-cluster 
sum compared to both of the abovementioned US-induced Chinese clusters.

Therefore, for data, we consider the two adjacency matrices of CO2 emissions induced 
by US construction and transport equipment demands for the year 2009, which were 
also used by Kagawa et al. (2015). We shall refer to them as the US construction and US 
transport datasets. Each adjacency matrix characterizes a network in which vertices are 
specified by a combination of a country plus an industry category (country–industry), 
with a total of 41 countries and 35 industries. The considered categories of countries and 
industries are listed in the supporting materials.

To detect the appropriate number of clusters K to be used in the experiment, we rely 
on the modularity index similarly as done by Kagawa et  al. (2013a, 2015). This index, 
which has been developed by Newman and Girvan (2004), is optimal (maximized) for 
the correct number of clusters. The modularity index can be formulated for a network 
G = (V ,E) of an adjacency matrix W = (wuv)1≤u,v≤n as

where pkk =
(∑

u∈Uk

∑
v∈Uk

wuv/
∑

u∈V

∑
v∈V wuv

)
 represents the within-cluster ratio 

for the k-th cluster and qk =
(∑

u∈Uk

∑
v∈V wuv/

∑
u∈V

∑
v∈V wuv

)
 represents the 

betweenness ratio for the k-th cluster. For each dataset case, we compute the modularity 
index for the instances 1 ≤ K ≤ 200. Each K instance involves performing NMF cluster-
ing to obtain the approximate matrix Ĥ and then averaging the modularity index over 
10 runs of K-means rounding. For the US construction dataset, the best index value is 
reached at K = 66 for Q = 0.197. We opted, although, for K = 64 as in Kagawa et  al. 
(2015) in order to ensure adequate comparison. Actually, Q(K = 64) = 0.195 is very 
close in value to the best case Q(K = 66). For the US transport dataset, K is set to the 
maximum index value, K = 68, which coincides exactly with the Kagawa et  al. (2015) 
choice. The plots of Q(K) are available in the supporting materials.

Adjacency matrices considered here represent CO2 emissions in interindustries 
induced by the final demand of products for a certain industry in a certain country. 
These matrices are based in an atomic level on three elements that are all obtained from 

Q(K ) =

K∑

k=1

(pkk − q2k ),
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the World Input–Output Database (Kagawa et al. 2015; Dietzenbacher et al. 2013; Tuk-
ker and Dietzenbacher 2013): the quantities of product sale between industries of differ-
ent countries, quantities of product sale to final consumers, and the amounts of carbon 
dioxide (CO2) emission of industries in different countries. All these data are actually 
estimates that could possibly suffer from statistical biases such as noise and missing 
values. Some weaknesses such as differences between countries in price concept or in 
import–export-processing activities are tackled by Dietzenbacher et  al. (2013). How-
ever, the risk that estimates do not match reality always exists. This can be an issue if the 
employed analysis is quite sensitive to errors in the used estimates, which is exactly our 
case.

Actually, we rely on the update rule (8) for the solving process, which is nothing more 
than an iterative improvement based on a gradient-descent procedure (Lee and Seung 
2001). This later method is famously known to be highly sensitive to the initial start-
ing solution (Avriel 2003), which is set in our case according to Kagawa et  al. (2015), 
Ding et al. (2008) to the indicator matrix solution obtained by spectral clustering and the 
application of K-means (plus a constant matrix). Furthermore, spectral clustering is sen-
sitive to errors in the input adjacency matrix (Von Luxburg 2007, p. 18). Following this 
reasoning, the NMF method is equally sensitive to errors in the input adjacency matrix. 
On the other hand, we already mentioned about the sensitive nature of K-means to the 
initial starting points.

Given these different sources of uncertainty in the employed analysis, we could easily 
suspect a risk of overfitting dataset instances and model initial choices when reporting 
Kagawa et al. (2015) cluster assignments. Plus, the reported clusters convey significant 
information about entry points for mitigating global warming, e.g., which industry sec-
tors could be starting points or priority targets when implementing policies of CO2 
emissions reduction involving the USA and China. Due to the relevance of the results’ 
implications, special care needs to be taken regarding the impact of errors in input adja-
cency matrices on the output clustering results.

Instead of relying on heuristic procedures to reduce the model’s uncertainties, which 
is in a sense done by Kagawa et  al. (2013a, 2015) when generating M clusterings cor-
responding to M runs of the K-means algorithm and then choosing the one with the 
optimal Ncut, a further systematic mechanism could be more reliable. By simultane-
ously encapsulating the simulation module and iteratively improving the normalized cut 
performance for clusterings, our method provides a more rigorous way to approach the 
sensitivity issue. Robustness against noise in the adjacency matrix is evaluated through 
a very large number of scenarios. Our overall method can be used as a black-box proce-
dure for clustering methods relying on K-means rounding, which also include spectral 
clusterings.

The setting of the experiment parameters is as follows. In order to cover a large 
range of noise magnitudes ξ, six instances are considered, ξ = 0.0 to 0.5 in steps of 0.1. 
The distribution of perturbations used to sample the perturbed adjacency matrices 
W1,W2, . . . ,WN is taken to be uniform. The parameters N the number of samples and 
M the number of clusterings are, respectively, set at 1000 and 100, which allow experi-
ments to be run within an acceptable CPU time. All experiment runs were done in a Java 
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environment on a 3-GHz CPU processor with 8 GB of memory. In the remainder of this 
section, we discuss the obtained results.

After the experiment is run for each instance of ξ, we construct a solution pool X  
composed by the found solutions plus the Kagawa et al. (2015) clustering. Notice that 
in all experiment runs, we obtain CR1 = CR2. The results of performing the simulation 
module with three noise magnitudes, ξ = 0.1 (small), 0.5 (large), and 5 (huge), on the 
constructed set X  are shown in Figs. 2, 3, and 4 and the corresponding Tables 3, 4, and 
5 in the case of the US construction dataset. The results on the US transport dataset 
are available in the supporting materials. The first striking observation for both data-
sets is the low normalized cut performance of Kagawa et al. (2015) clustering for both 
the nominal adjacency matrix and across the perturbation scenarios. These Ncut val-
ues are almost twice the Ncut values of the experiment top clusterings, and those for 
the US transport case are much higher. Ncut values of Kagawa et al. (2015) clusterings 
are centered around approximately 21.56 and 45.7, compared with the robustest cluster-
ings of the experiment, which gravitated around 9.8 and 10.9 for, respectively, US con-
struction and transport demands. This means that in uncertain environments Kagawa 
et al. (2015) clusterings do not perform well, even if their Ncut values are close on aver-
age to the nominal case for low and large magnitude cases. It should be noted that the 
mean Ncut can be misleading due to the presence of outliers. These observations are 
elucidated clearly via the simulation assessments RX

1  and RX

2  of Figures 2, 3, and 4. While 
the clustering induced by the ξ = 0.4 experiment for the US construction case exhibits 
the most robust behavior across the various noise magnitudes, the Kagawa et al. (2015) 
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Fig. 2  Results of a simulation run for the noise magnitude ξ = 0.1 and the US construction dataset such that 
the set X  is taken to be the top clusterings found by the experiment (ξ varying from 0.0 to 0.5) in addition to 
the Kagawa et al. (2015) clustering
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Fig. 3  Results of a simulation run for the noise magnitude ξ = 0.5 and the US construction dataset such that 
the set X  is taken to be the top clusterings found by the experiment (ξ varying from 0.0 to 0.5) in addition to 
the Kagawa et al. (2015) clustering
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Fig. 4  Results of a simulation run for the noise magnitude ξ = 5 and the US construction dataset such that 
the set X  is taken to be the top clusterings found by the experiment (ξ varying from 0.0 to 0.5) in addition to 
the Kagawa et al. (2015) clustering



Page 17 of 29Rifki et al. Economic Structures  (2017) 6:3 

Table 3  Ncut values for the nominal scenario (nominal Ncut) and averaged over all scenar-
ios (mean Ncut) for the clusterings of the simulation run corresponding to Fig. 2

Clustering ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 Kagawa et al. (2015)

Nominal Ncut 9.800 11.991 12.931 12.557 9.521 9.557 21.564

Mean Ncut 9.802 11.994 12.943 12.561 9.522 9.560 21.568

Table 4  Ncut values for the nominal scenario (nominal Ncut) and averaged over all scenar-
ios (mean Ncut) for the clusterings of the simulation run corresponding to Fig. 3

Clustering ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 Kagawa et al. (2015)

Nominal Ncut 9.800 11.991 12.931 12.557 9.521 9.557 21.564

Mean Ncut 9.810 12.006 12.953 12.566 9.529 9.567 21.578

Table 5  Ncut values for the nominal scenario (nominal Ncut) and averaged over all scenar-
ios (mean Ncut) for the clusterings of the simulation run corresponding to Fig. 4

Clustering ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 Kagawa et al. (2015)

Nominal Ncut 9.800 11.991 12.931 12.557 9.521 9.557 21.564

Mean Ncut 12.498 14.523 14.811 11.658 5.751 10.753 31.696

clustering is found to be in an unfavorable position of below and to the left of all other 
plots of (RX

1 ,RX

2 ).
After examining the consistency of the clusters order throughout our experiment 

runs, which is available in the supporting materials, we compare the cluster components 
of the Kagawa et al. (2015) clusterings to those of our robustest clusterings for US trans-
port and US construction in Tables 6 and 7, respectively. The US clusters, i.e., induced 
and generated by US industries, of (C1) and (C5) have the highest positions in Tables 6 
and 7, respectively. Each cluster generated in 2009 more than 162 million tonnes of CO2 
emissions in US territories. Their compact structure and high within-cluster emissions 
are the main differences with the Kagawa et al. (2015) US clusters. In fact, there were 
two US clusters in the Kagawa et al. (2015) clustering for the US construction dataset.

On the other hand, the two Chinese clusters of (C2) and (C6) have exactly the same 
components, except for two additional Korean elements, c1 and c3, in the US construc-
tion case. The differences between the (C2) and (C6) components and the Kagawa et al. 
(2015) Chinese clusters are small. The quasi-totalities of the elements are similar. More 
importantly, the two strong supply chains reported in Kagawa et  al. (2015)—(1) c17 
(CHN) ⇒ c12 (CHN) and (2) c17 (CHN) ⇒ c9 (CHN)—are still present in our Chinese 
clusters. c17 refers to Electricity, Gas and Water Supply, c12 to Basic Metals and Fabri-
cated Metal, and c9 to Chemicals and Chemical Products. Both supply chains are major 
contributors in the CO2 emissions within the Chinese clusters. Figure 5 illustrates the 
Chinese emission cluster (C2) of Table 6, which corresponds to the US transport case.

By obtaining similar results for the most important supply chains, we confirm the 
environmental policy conclusions reached by Kagawa et  al. (2015). Mitigating global 
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Table 6  CO2 clusters with the highest within-cluster emissions (Kt CO2 eq.) induced by the 
final demand of  the US transport dataset for  the following  two cases: the Kagawa et  al. 
(2015) clustering and the robustest clustering of the experiment (ξ = 0.3)

Rank Kagawa et al. (2015) Experiment (ξ = 0.3)

Cluster name Industrial sectors Within- 
cluster sum

Cluster 
name

Industrial sectors Within- 
cluster sum

1 American and 
polonese 
cluster

USA: Mining and Quarrying 49,201 American  
cluster (C1)

USA: Mining and Quar-
rying

164,072

USA: Pulp, Paper, Paper, 
Printing and Publishing

USA: Pulp, Paper, Paper, 
Printing and Publishing

USA: Coke, Refined Petro-
leum and Nuclear Fuel

USA: Coke, Refined Petro-
leum and Nuclear Fuel

USA: Chemicals and Chemi-
cal Products

USA: Chemicals and 
Chemical Products

USA: Rubber and Plastics USA: Rubber and Plastics

USA: Other Non-Metallic 
Mineral

USA: Other Non-Metallic 
Mineral

USA: Basic Metals and 
Fabricated Metal

USA: Basic Metals and 
Fabricated Metal

USA: Transport Equipment USA: Wood and Products 
of Wood and Cork

USA: Electricity, Gas and 
Water Supply

USA: Electricity, Gas and 
Water Supply

USA: Wholesale Trade and 
Commission Trade,

USA: Wholesale Trade and 
Commission Trade,

Except of Motor Vehicles 
and Motorcycles

Except of Motor Vehicles 
and Motorcycles

USA: Inland Transport USA: Inland Transport

USA: Other Supporting and 
Auxiliary Transport

USA: Retail Trade, Except 
of Motor Vehicles and

Activities; Activities of Travel 
Agencies

Motorcycles; Repair of 
Household Goods

USA: Financial Intermedia-
tion

USA: Construction

USA: Renting of M&Eq and 
Other Business Activities

USA: Air Transport

POL: Mining and Quarrying USA: Other Supporting 
and Auxiliary Transport

POL: Coke, Refined Petro-
leum and Nuclear Fuel

Activities; Activities of 
Travel Agencies

POL: Chemicals and Chemi-
cal Products

USA: Post and Telecom-
munications

POL: Rubber and Plastics USA: Financial Intermedia-
tion

POL: Other Non-Metallic 
Mineral

USA: Renting of M&Eq and 
Other Business Activities

POL: Basic Metals and 
Fabricated Metal

USA: Other Community, 
Social and Personal 
Services

POL: Machinery, Nec

POL: Electrical and Optical 
Equipment

POL: Transport Equipment

POL: Electricity, Gas and 
Water Supply

POL: Wholesale Trade and 
Commission Trade,

Except of Motor Vehicles 
and Motorcycles

POL: Retail Trade, Except of 
Motor Vehicles and
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Table 6  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.3)

Cluster name Industrial sectors Within- 
cluster sum

Cluster 
name

Industrial sectors Within- 
cluster sum

Motorcycles; Repair of 
Household Goods

POL: Inland Transport

POL: Real Estate Activities

POL: Renting of M&Eq and 
Other Business Activities

POL: Other Community, 
Social and Personal 
Services

2 Big cluster (664 elements) 18,488 Chinese clus-
ter (C2)

CHN: Agriculture, Hunting, 
Forestry and Fishing

13,035

CHN: Mining and Quarrying

CHN: Food, Beverages and 
Tobacco

CHN: Textiles and Textile 
Products

CHN: Wood and Products 
of Wood and Cork

CHN: Pulp, Paper, Paper, 
Printing and Publishing

CHN: Coke, Refined Petro-
leum and Nuclear Fuel

CHN: Chemicals and 
Chemical Products

CHN: Rubber and Plastics

CHN: Other Non-Metallic 
Mineral

CHN: Basic Metals and 
Fabricated Metal

CHN: Machinery, Nec

CHN: Electrical and Opti-
cal Equipment

CHN: Electricity, Gas and 
Water Supply

CHN: Hotels and Restau-
rants

CHN: Inland Transport

CHN: Renting of M&Eq 
and Other Business 
Activities

3 Chinese cluster CHN: Agriculture, Hunting, 
Forestry and Fishing

12,805 Rest of the 
world cluster 
(C3)

DNK: Water Transport 5963

CHN: Mining and Quarrying FRA: Agriculture, Hunting, 
Forestry and Fishing

CHN: Food, Beverages and 
Tobacco

FRA: Food, Beverages and 
Tobacco

CHN: Textiles and Textile 
Products

FRA: Wood and Products 
of Wood and Cork

CHN: Leather, Leather and 
Footwear

FRA: Pulp, Paper, Paper, 
Printing and Publishing

CHN: Pulp, Paper, Paper, 
Printing and Publishing

FRA: Coke, Refined Petro-
leum and Nuclear Fuel

CHN: Coke, Refined Petro-
leum and Nuclear Fuel

FRA: Chemicals and 
Chemical Products

CHN: Chemicals and 
Chemical Products

FRA: Rubber and Plastics

CHN: Rubber and Plastics FRA: Other Non-Metallic 
Mineral
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Table 6  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.3)

Cluster name Industrial sectors Within- 
cluster sum

Cluster 
name

Industrial sectors Within- 
cluster sum

CHN: Other Non-Metallic 
Mineral

FRA: Basic Metals and 
Fabricated Metal

CHN: Basic Metals and 
Fabricated Metal

FRA: Machinery, Nec

CHN: Machinery, Nec FRA: Electrical and Optical 
Equipment

CHN: Electrical and Optical 
Equipment

FRA: Transport Equipment

CHN: Transport Equipment FRA: Manufacturing, Nec; 
Recycling

CHN: Electricity, Gas and 
Water Supply

FRA: Electricity, Gas and 
Water Supply

CHN: Inland Transport FRA: Sale, Maintenance and 
Repair of Motor Vehicles

CHN: Renting of M&Eq and 
Other Business Activities

and Motorcycles; Retail 
Sale of Fuel

FRA: Wholesale Trade and 
Commission Trade,

Except of Motor Vehicles 
and Motorcycles

FRA: Retail Trade, Except of 
Motor Vehicles and

Motorcycles; Repair of 
Household Goods

FRA: Hotels and Restau-
rants

FRA: Inland Transport

FRA: Financial Intermedia-
tion

FRA: Renting of M&Eq and 
Other Business Activities

FRA: Other Community, 
Social and Personal 
Services

KOR: Water Transport

ROW: Agriculture, Hunt-
ing, Forestry and Fishing

ROW: Mining and Quar-
rying

ROW: Food, Beverages 
and Tobacco

ROW: Wood and Products 
of Wood and Cork

ROW: Pulp, Paper, Paper, 
Printing and Publishing

ROW: Chemicals and 
Chemical Products

ROW: Rubber and Plastics

ROW: Basic Metals and 
Fabricated Metal

ROW: Machinery, Nec

ROW: Electrical and Opti-
cal Equipment

ROW: Electricity, Gas and 
Water Supply

ROW: Wholesale Trade 
and Commission Trade,

Except of Motor Vehicles 
and Motorcycles
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Table 6  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.3)

Cluster name Industrial sectors Within- 
cluster sum

Cluster 
name

Industrial sectors Within- 
cluster sum

ROW: Retail Trade, Except 
of Motor Vehicles and

Motorcycles; Repair of 
Household Goods

ROW: Hotels and Res-
taurants

ROW: Inland Transport

ROW: Water Transport

ROW: Air Transport

ROW: Other Supporting 
and Auxiliary Transport

Activities; Activities of 
Travel Agencies

ROW: Post and Telecom-
munications

ROW: Financial Interme-
diation

ROW: Renting of M&Eq 
and Other Business 
Activities

ROW: Other Community, 
Social and Personal 
Services

4 Rest of the 
world cluster

ROW: Mining and Quar-
rying

4278 Indian cluster 
(C4)

IND: Textiles and Textile 
Products

1570

ROW: Rubber and Plastics IND: Wood and Products 
of Wood and Cork

ROW: Basic Metals and 
Fabricated Metal

IND: Pulp, Paper, Paper, 
Printing and Publishing

ROW: Electricity, Gas and 
Water Supply

IND: Coke, Refined Petro-
leum and Nuclear Fuel

ROW: Inland Transport IND: Chemicals and 
Chemical Products

ROW: Water Transport IND: Rubber and Plastics

ROW: Renting of M&Eq and 
Other Business Activities

IND: Other Non-Metallic 
Mineral

IND: Basic Metals and 
Fabricated Metal

IND: Machinery, Nec

IND: Electrical and Optical 
Equipment

IND: Transport Equipment

IND: Manufacturing, Nec; 
Recycling

IND: Electricity, Gas and 
Water Supply

IND: Construction

IND: Inland Transport

IND: Post and Telecommu-
nications

IND: Financial Interme-
diation

IND: Renting of M&Eq and 
Other Business Activities

ROW: Manufacturing, Nec; 
Recycling

5 Canadian 
cluster

CAN: Agriculture, Hunting, 
Forestry and Fishing

2110 Mexican 
cluster

MEX: Agriculture, Hunting, 
Forestry and Fishing

1302
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Table 6  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.3)

Cluster name Industrial sectors Within- 
cluster sum

Cluster 
name

Industrial sectors Within- 
cluster sum

CAN: Mining and Quarrying MEX: Mining and Quar-
rying

CAN: Food, Beverages and 
Tobacco

MEX: Food, Beverages and 
Tobacco

CAN: Wood and Products of 
Wood and Cork

MEX: Textiles and Textile 
Products

CAN: Pulp, Paper, Paper, 
Printing and Publishing

MEX: Wood and Products 
of Wood and Cork

CAN: Coke, Refined Petro-
leum and Nuclear Fuel

MEX: Pulp, Paper, Paper, 
Printing and Publishing

CAN: Chemicals and 
Chemical Products

MEX: Coke, Refined Petro-
leum and Nuclear Fuel

CAN: Rubber and Plastics MEX: Chemicals and 
Chemical Products

CAN: Other Non-Metallic 
Mineral

MEX: Rubber and Plastics

CAN: Basic Metals and 
Fabricated Metal

MEX: Other Non-Metallic 
Mineral

CAN: Machinery, Nec MEX: Basic Metals and 
Fabricated Metal

CAN: Electrical and Optical 
Equipment

MEX: Machinery, Nec

CAN: Transport Equipment MEX: Electrical and Optical 
Equipment

CAN: Electricity, Gas and 
Water Supply

MEX: Transport Equipment

CAN: Wholesale Trade and 
Commission Trade,

MEX: Wholesale Trade and 
Commission Trade,

Except of Motor Vehicles 
and Motorcycles

 Except of Motor Vehicles 
and Motorcycles

CAN: Retail Trade, Except of 
Motor Vehicles and

MEX: Retail Trade, Except 
of Motor Vehicles and

 Motorcycles; Repair of 
Household Goods

Motorcycles; Repair of 
Household Goods

CAN: Inland Transport MEX: Inland Transport

CAN: Water Transport MEX: Manufacturing, Nec; 
Recycling

CAN: Air Transport MEX: Electricity, Gas and 
Water Supply

CAN: Other Supporting and 
Auxiliary Transport

MEX: Hotels and Restau-
rants

Activities; Activities of Travel 
Agencies

MEX: Sale, Maintenance 
and Repair of Motor

CAN: Post and Telecommu-
nications

Vehicles and Motorcycles; 
Retail Sale of Fuel

CAN: Financial Intermedia-
tion

MEX: Financial Intermedia-
tion

CAN: Real Estate Activities MEX: Renting of M&Eq 
and Other Business 
Activities

CAN: Renting of M&Eq and 
Other Business Activities

CAN: Other Community, 
Social and Personal 
Services
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Table 7  CO2 clusters with the highest within-cluster emissions (Kt CO2 eq.) induced by the 
final demand of the US construction dataset for the following two cases: the Kagawa et al. 
(2015) clustering and the robustest clustering of the experiment (ξ = 0.4)

Rank Kagawa et al. (2015) Experiment (ξ = 0.4)

Cluster name Industrial sectors Within-cluster 
sum

Cluster name Industrial  
sectors

Within- 
cluster sum

1 American 
cluster (1)

USA: Mining and 
Quarrying

120,033 American  
cluster (C5)

USA: Mining and 
Quarrying

162,275

USA: Coke, Refined 
Petroleum and 
Nuclear Fuel

USA: Coke, Refined 
Petroleum and 
Nuclear Fuel

USA: Other Non-
Metallic Mineral

USA: Other Non-
Metallic Mineral

USA: Basic Metals 
and Fabricated 
Metal

USA: Basic Metals 
and Fabricated 
Metal

USA: Electricity, Gas 
and Water Supply

USA: Electricity, 
Gas and Water 
Supply

USA: Construction USA: Construction

USA: Inland Trans-
port

USA: Inland 
Transport

USA: Wood and 
Products of 
Wood and Cork

USA: Pulp, Paper, 
Paper, Printing 
and Publishing

USA: Chemicals 
and Chemical 
Products

USA: Rubber and 
Plastics

USA: Wholesale 
Trade and Com-
mission Trade,

Except of Motor 
Vehicles and 
Motorcycles

USA: Retail Trade, 
Except of Motor 
Vehicles and

Motorcycles; 
Repair of House-
hold Goods

USA: Air Transport

USA: Other 
Supporting 
and Auxiliary 
Transport

Activities; Activi-
ties of Travel 
Agencies

USA: Financial 
Intermediation

USA: Renting 
of M&Eq and 
Other Business 
Activities
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Table 7  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.4)

Cluster name Industrial sectors Within-cluster 
sum

Cluster name Industrial  
sectors

Within- 
cluster sum

USA: Other Com-
munity, Social 
and Personal 
Services

2 Chinese cluster CHN: Agriculture, 
Hunting, Forestry 
and Fishing

12,900 Chinese cluster 
(C6)

CHN: Agricul-
ture, Hunting, 
Forestry and 
Fishing

13,037

CHN: Mining and 
Quarrying

CHN: Mining and 
Quarrying

CHN: Food, Bever-
ages and Tobacco

CHN: Food, 
Beverages and 
Tobacco

CHN: Textiles and 
Textile Products

CHN: Textiles and 
Textile Products

CHN: Wood and 
Products of Wood 
and Cork

CHN: Wood and 
Products of 
Wood and Cork

CHN: Pulp, Paper, 
Paper, Printing 
and Publishing

CHN: Pulp, Paper, 
Paper, Printing 
and Publishing

CHN: Coke, Refined 
Petroleum and 
Nuclear Fuel

CHN: Coke, 
Refined 
Petroleum and 
Nuclear Fuel

CHN: Chemicals 
and Chemical 
Products

CHN: Chemicals 
and Chemical 
Products

CHN: Rubber and 
Plastics

CHN: Rubber and 
Plastics

CHN: Other Non-
Metallic Mineral

CHN: Other Non-
Metallic Mineral

CHN: Basic Metals 
and Fabricated 
Metal

CHN: Basic Metals 
and Fabricated 
Metal

CHN: Machinery, 
Nec

CHN: Machinery, 
Nec

CHN: Electrical and 
Optical Equip-
ment

CHN: Electrical 
and Optical 
Equipment

CHN: Electricity, 
Gas and Water 
Supply

CHN: Electricity, 
Gas and Water 
Supply

CHN: Inland Trans-
port

CHN: Inland 
Transport

CHN: Renting of 
M&Eq and Other 
Business Activi-
ties

CHN: Renting 
of M&Eq and 
Other Business 
Activities

CHN: Hotels and 
Restaurants

KOR: Agricul-
ture, Hunting, 
Forestry and 
Fishing
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Table 7  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.4)

Cluster name Industrial sectors Within-cluster 
sum

Cluster name Industrial  
sectors

Within- 
cluster sum

KOR: Food, 
Beverages and 
Tobacco

3 American 
cluster (2)

USA: Agriculture, 
Hunting, Forestry 
and Fishing

7458 Big cluster (C8) (570 elements) 3816

USA: Food, Bever-
ages and Tobacco

USA: Textiles and 
Textile Products

USA: Wood and 
Products of Wood 
and Cork

USA: Pulp, Paper, 
Paper, Printing 
and Publishing

USA: Chemicals 
and Chemical 
Products

USA: Rubber and 
Plastics

USA: Wholesale 
Trade and Com-
mission Trade,

Except of Motor 
Vehicles and 
Motorcycles

USA: Retail Trade, 
Except of Motor 
Vehicles and

Motorcycles; Repair 
of Household 
Goods

USA: Hotels and 
Restaurants

USA: Air Transport

USA: Other Sup-
porting and Aux-
iliary Transport

Activities; Activities 
of Travel Agencies

USA: Post and 
Telecommunica-
tions

USA: Financial 
Intermediation

USA: Renting of 
M&Eq and Other 
Business Activi-
ties

USA: Other Com-
munity, Social 
and Personal 
Services

ROW: Chemicals 
and Chemical 
Products
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Table 7  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.4)

Cluster name Industrial sectors Within-cluster 
sum

Cluster name Industrial  
sectors

Within- 
cluster sum

4 Rest of the 
world cluster

ROW: Mining and 
Quarrying

3869 Rest of the 
world cluster 
(C7)

ROW: Mining and 
Quarrying

3264

ROW: Electricity, 
Gas and Water 
Supply

ROW: Electricity, 
Gas and Water 
Supply

ROW: Inland 
Transport

ROW: Inland 
Transport

ROW: Water Trans-
port

ROW: Water 
Transport

ROW: Rubber and 
Plastics

ROW: Renting of 
M&Eq and Other 
Business Activi-
ties

5 Canadian 
cluster

CAN: Mining and 
Quarrying

1533 Russian cluster RUS: Mining and 
Quarrying

1297

CAN: Pulp, Paper, 
Paper, Printing 
and Publishing

RUS: Basic Metals 
and Fabricated 
Metal

CAN: Coke, Refined 
Petroleum and 
Nuclear Fuel

RUS: Coke, Refined 
Petroleum and 
Nuclear Fuel

CAN: Electricity, Gas 
and Water Supply

RUS: Electricity, 
Gas and Water 
Supply

CAN: Wholesale 
Trade and Com-
mission Trade,

RUS: Wholesale 
Trade and Com-
mission Trade,

Except of Motor 
Vehicles and 
Motorcycles

Except of Motor 
Vehicles and 
Motorcycles

CAN: Chemicals 
and Chemical 
Products

RUS: Chemicals 
and Chemical 
Products

CAN: Inland Trans-
port

RUS: Inland Trans-
port

CAN: Agriculture, 
Hunting, Forestry 
and Fishing

CAN: Wood and 
Products of Wood 
and Cork

CAN: Basic Metals 
and Fabricated 
Metal

CAN: Retail Trade, 
Except of Motor 
Vehicles and

Motorcycles; 
Repair of House-
hold Goods
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CHN-c1

CHN-c2

CHN-c3

CHN-c4

CHN-c6

CHN-c7

CHN-c8

CHN-c9

CHN-c10CHN-c11

CHN-c12

CHN-c13

CHN-c14

CHN-c17

CHN-c22

CHN-c23

CHN-c30

Fig. 5  Chinese emission cluster (C2) induced by US transport equipment demand obtained in Table 6. This 
figure is drawn using the “qgraph” R package (Epskamp et al. 2012)

Table 7  continued

Rank Kagawa et al. (2015) Experiment (ξ = 0.4)

Cluster name Industrial sectors Within-cluster 
sum

Cluster name Industrial  
sectors

Within- 
cluster sum

CAN: Renting 
of M&Eq and 
Other Business 
Activities

CAN: Other Com-
munity, Social 
and Personal 
Services

warming through supply-chain transfers that could be based on reducing the amount of 
CO2 emissions for supply chains (1) and (2) has, from our point of view, a good immu-
nity against random deviations of the input–output data. Additionally, our superior 
Ncut performance reached for the robustest clusterings confers more trust in the envi-
ronmental conclusions about the policies suggested in Kagawa et al. (2015).
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5 � Conclusion
In this study, we establish a sampling-based procedure in order to examine the robust-
ness of clusterings that could be found using nonnegative matrix factorization or spectral 
clustering methods. An application of the procedure is provided here by re-examining/
comparing the analysis of Kagawa et  al. (2015). In their paper, significant clusters in 
terms of CO2 emissions that are rapidly growing over time were found. Here, our pro-
cedure is applied to the datasets of Kagawa et al. (2015) that have strong environmental 
implications, namely the two CO2 emissions networks induced by the US construction 
and US transport equipment sectors. In our empirical results, we find clusterings that 
have much better normalized cut performance and robustness assessments than those of 
Kagawa et al. (2015). Some differences in the components between the compared clus-
ters are observed. However, the main supply-chain paths on which Kagawa et al. (2015) 
based their recommendations for mitigating global warning still persist. These recom-
mendations concern the significant Chinese clusters linked to our target US demands. 
In summary, from a robustness perspective, we concur with the Kagawa et  al. (2015) 
environmental conclusions regarding policies.
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