
Structural change in the Chicago region 
and the impact on emission inventories in a 
continuous‑time modeling approach
Kieran Donaghy1, Clifford R. Wymer2, Geoffrey J. D. Hewings3* and Soo Jung Ha4

1 � Background
Since at least the time of the industrial revolution, it has been observed that changes in 
economic activity can induce changes in the natural environment. Conversely, environ-
mental changes can—and increasingly do—have economic consequences. For example, 
increased levels of by-production or trade will generally lead to increases in pollution, 
and high regional pollution levels will affect households’ location choices. As the inter-
actions between economic and environmental systems are becoming stronger and more 
apparent, anticipating and understanding environmental changes induced by economic 
activity is becoming increasingly challenging for both environmental scientists and 
economists and for policy makers who must ultimately choose strategies to balance 
risks and costs. Therefore, many researchers have turned to what are termed ‘integrated 
assessment’ frameworks, comprising both economic and environmental models, for 
the purpose of conducting simulations that might inform us about what environmen-
tal changes lie ahead if economic activity should follow particular paths (for example, 
see Igos et al. 2015). The economic models employed in such frameworks are based on 
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prevailing economic theories and include input–output models, national and regional 
macroeconomic models, and computable general equilibrium models (CGE) (Igos et al. 
2015). However, these economic models, which tend to be formulated in discrete time, 
can present difficulties both in linking with natural science-based models formulated in 
continuous time and in representing the ongoing development of environmental phe-
nomena over time.

While the natural environment—especially the global climate—has been undergoing 
dramatically noticeable changes, even within the last decade alone (IPCC 2007), there 
have also been important developments in the structure of regional economies. For 
example, Munroe et  al. (2007) have found that, in the USA, interstate trade has been 
increasing but is dominated by intra-industry trade for the Midwest states. Further, 
empirical analyses by Hewings et al. (1998) have revealed the workings of a ‘hollowing 
out’ process, which has resulted in a decrease in internal and an increase in external 
dependence on the economy of Chicago. Trade data suggest that the transportation 
intensity of production is greater than before and that non-polluting industrial sectors 
are likely to account for a larger share of economic activity than polluting sectors.

Motivated by both the need to model carefully these recent structural economic 
changes and the need to understand better the nature of environmental–economic 
interactions, we introduce in this paper a continuous-time regional econometric input–
output model (REIM) for the Chicago economy (CREIM) that can be used to analyze—
at disaggregated sectoral and temporal levels—the economic and environmental 
implications of changes exogenous to the economy. The model’s solution yields estimates 
of emission inventories, which may be used to analyze environmental implications of 
various economic changes and policy restrictions. This model is the first integrated eco-
nomic–environmental model of which we are aware that has been formulated and esti-
mated in continuous time for the regional economy of a metropolitan area.1

The choice of Chicago for implementation of the continuous-time model was based 
on over two decades of experience with the annual REIM as well as the availability of 
detailed environmental data for the same region. We believe that the model’s formu-
lation will enable it to enjoy greater compatibility with natural science-based models, 
which share such a formulation, and flexibility in projecting future emissions corre-
sponding to alternative future economic scenarios and in evaluating emissions policies 
relevant to such scenarios. In addition, the Chicago region typifies a formerly manu-
facturing-dependent region that has undergone a significant transformation to service 
dominance over the period from 1980 to 2015. The forecasted structural changes (see 
Israilevich et al. 1997, for details) suggest a more nuanced transformation of the remain-
ing manufacturing sectors, such as those reported in Romero et al. (2009) that explored 
differences in spatial and functional fragmentation processes within the Chicago region.

In the next section, we discuss theoretical and empirical developments in integrated 
environmental–economic models, and in Sect.  3, we summarize the structure of the 
Chicago REIM (CREIM), which has provided the basis for our model, and the method-
ologies used to reformulate it in continuous time. Section 4 is composed of two parts: a 

1  Tao et al. (2010) employ such a model to examine effects of structural change on emissions over the entire Midwest 
United States at a higher level of sectoral aggregation.
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presentation of the integrated econometric–emission modeling system with two types of 
emission intensity (EMI) and a presentation of their simulation results to 2050. Changes 
in simulated emission inventories presented in Sect. 4 are decomposed into two compo-
nents: those due to technological changes and those due to the growth of production. 
This decomposition is performed in order to obtain an indication of which effect is likely 
to contribute more to future emission inventories. The implications of this decomposi-
tion are presented in Sect.  5. The paper concludes with a summary of the simulation 
results and suggestions for further research.

2 � Literature review
Spatially referenced integrated environmental–economic models have shared some 
common frameworks. The economic component in integrated models usually consists of 
a regional or multiregional input–output model, a national or regional macroeconomic 
model or a general equilibrium model describing the relationships among the eco-
nomic sectors of the region(s). The environmental component usually consists of models 
describing the generation and transport of pollutants and their subsequent interactions 
with the ecosystem of the region(s). In earlier studies attempting to assess quantitatively 
environmental impacts, two distinct models (Leontief 1970; Leontief and Ford 1972; 
Isard 1972) combined both the economic and environmental variables and their inter-
actions in one operational form. Leontief (1970) and Leontief and Ford (1972) enlarged 
the traditional input–output model to account for the generation of pollutants by the 
economic system and the operation of anti-pollution activities. Isard (1972) suggested 
a synthesis of the economic with the ecologic system using an input–output format. His 
model described the interactions within each system separately and then between the 
economic and the ecologic systems. In the 1980s, input–output models were widely used 
as an economic component to link an environmental model (Forsund 1985; James 1985; 
Ketkar 1984; Lesuis et al. 1980; Pedersen 1996; Rhee and Miranowski 1984).

Since various input–output approaches such as a decomposition of the Leontief 
inverse matrix have been developed (Round 1985; Oosterhaven and van der Linden 
1997; Sonis and Hewings 1992, 1996), more recent studies have used structural analyses 
in an input–output model in order to examine the relationship between economic pat-
terns and the development of emissions (Munksgaard et al. 2000; Fritz et al. 2002; Len-
zen et al. 2004). The role of private consumption affecting CO2 emissions in Denmark 
over 1966–1992 was analyzed by Munksgaard et  al. (2000). Distinguishing between 
direct and indirect as well as domestic and imported CO2 emissions, Munksgaard et al. 
(2000) were one of the first to find that indirect emissions accounted for a major part of 
growth in total emissions from household consumption, although CO2 emissions from 
direct consumption still exceeded the emissions from indirect consumption. Other stud-
ies confirmed similar findings (e.g., Ivanova et al. 2016; Wiedmann et al. 2010; Wood and 
Dey 2009).

Fritz et al. (2002) adopted the field of influence approach of Sonis and Hewings (1992) 
to identify the changes in the direct coefficients table of an input–output model that 
created the largest impact on sectoral pollution multipliers. They pointed out that the 
service industries and some manufacturing sectors (for example, rubber and plastic) in 
the Chicago economy were increasing their output and employment and this growth is 
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one of the indirect sources of air pollution by the non-polluting industries through their 
demands for inputs from polluting sectors. Hence, it is important to consider struc-
tural changes in formulating environmental regulations. In similar fashion, Lenzen et al. 
(2004) included a feedback-loop analysis with a detailed multiregional input–output 
model to calculate CO2 multipliers for trade between Denmark, Germany, Norway, Swe-
den and the rest of the world. They constructed an 1199 by 1199 matrix containing total, 
region-specific multipliers of intermediate demand, trade, energy consumption and CO2 
emissions and then captured direct, indirect and induced effects of trade.

In addition to those studies using input–output models to integrate the relationship 
between economic and environmental sectors, many simulation models for environ-
mental impact analyses have also integrated environmental components. Some earlier 
studies, such as Hazilla and Kopp (1990), Jorgenson and Wilcoxon (1990a, b) and Con-
rad and Schroder (1993), used CGE models to estimate the costs of environmental regu-
lations. Especially after the Kyoto Protocol—which emerged from the United Nations 
Framework Convention on Climate Change (UNFCCC)—called for a reduction in 
the emissions of carbon dioxide and five other greenhouse gases (GHG), a number of 
approaches based on CGE modeling have been used to quantify the GHG emission as 
a result of economic activity (Babiker et al. 2001; Hertel and McDougall 2003; Springer 
2002).

The MIT Emissions Prediction and Policy Analysis (EPPA) model has been used to 
analyze the processes that produce greenhouse-relevant emissions, and to assess the 
consequences of policy proposals intended to control these emissions with a CGE model 
of the world economy over a 100-year horizon (Babiker et  al. 2001). Their emission 
scenarios are used as inputs into an atmospheric chemistry–climate model along with 
scenarios of natural emissions of GHGs from a natural emission model. Babiker et  al. 
(2001) found that the inventory of climatically important substances highlighted the role 
of non-energy sources (e.g. agriculture, biomass burning) and developing countries as 
important current sources of many of these emissions.

Hertel and McDougall (2003) have developed a Global Trade Analysis Project (GTAP) 
model that is a static multiregional, multisectoral applied general equilibrium model. 
They have developed a land-use and greenhouse gas emission database to link model 
components together and assessed the costs of climate policies and their spillover effects 
via international trade and sectoral interaction. Springer (2002) has also assessed the 
allocational and distributional impacts of international climate policies, such as the 
Kyoto Protocol, on different regions of the world with the focus on the interaction of 
international trade in goods and international capital mobility. Springer’s analysis used 
a dynamic, multiregional, multisectoral computable general equilibrium model. The 
empirical simulation analysis revealed that economic integration, as well as policies 
aimed at improving the diversification of the export structure of economics, might help 
to reduce the negative consequences connected with greenhouse gas abatement.

Specifications of the CGE models used in these studies are based on neoclassical 
theory with the central assumption being that all agents are acting with full informa-
tion in perfectly competitive markets, so that all decisions are the result of optimization 
based on some assumption about the technology or the aggregate welfare function of 
the economy. There are other simulation models that follow macroeconomic theory and 
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are based on assumptions that agents decide under conditions of bounded rationality 
in imperfect markets. The difference between these alternative models—e.g., COmpre-
hensive Model of Policy ASSessment (COMPASS) (Uno 2002) and Global INterindustry 
FORecasting System (GINFORS) (Meyer et al. 2004)—and CGE models is that the for-
mer are macroeconometric input–output models. The core of both models is a multi-
sectoral bilateral trade model and both systems characterize the interdependencies of 
economic and environmental development with respect to energy consumption. COM-
PASS and GINFORS are sectorally disaggregated and their behavioral parameters are 
estimated from time-series data by econometric methods. The estimated models are 
tested and equations are adapted until the models are able to reproduce history for a 
longer period. The models are then employed in simulations and forecasts of economic 
developments and their effects on markets and employment as well as global energy, 
resource and land consumption.

3 � Continuous‑time modeling of CREIM
3.1 � Chicago regional econometric input–output model (CREIM)2

The Regional Economics Applications Laboratory (REAL) has constructed or overseen 
the construction of a number of impact and forecasting models for the Chicago metro-
politan area, which encompasses Cook, Dupage, Kane, Lake, McHenry and Will coun-
ties. One such model, CREIM, is based on an initial formulation of Conway (1990, 1991), 
which was developed further by Israilevich et al. (1997). CREIM integrates econometric 
and input–output components, enabling impact analysis to be conducted as well as 
annual forecasts made for a 30-year horizon for up to 45 different NAICS-based3 indus-
trial sectors (production, employment and income) and several major economic aggre-
gates (such as gross regional product, wage rates, unemployment). CREIM is a 
computable regional general equilibrium model based on Marshallian equilibrium of 
outputs (see Takayama 1985). The model combines traditional input–output analysis 
with time-series analysis. The input–output component in this model enables a detailed 
analysis of purchases and sales between industries, while the time-series component 
allows for the analysis of intertemporal change in the transaction flows of goods and ser-
vices. Together, these two components yield a detailed analysis of structural change over 
time at the sectoral level. By taking into account transaction flows between industries, 
CREIM is able to yield estimates of the spillover or indirect effects within the economy 
that direct analysis cannot capture because it examines each sector irrespective of its 
effect on other sectors.

CREIM uses the input–output component as a deterministic linear predictor of 
output:

where (disregarding the time superscript) aij is the direct input requirement of sector 
j from sector i, and m is the number of sectors, fij is a normalized regional purchase 

2  This section draws on Israilevich et al. (1996, 1997) and Israilevich (2002).
3  NAICS is the North American Industrial Classification System.
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coefficient of demand of sector j from sector i in the final demand matrix, xj is the total 
observed output of sector j, Y =

[
∑q

k=1 yk
]

 is the final demand vector consisting of q 
components, namely, personal consumption, investment, government expenditure and 
net exports, N =  [ni] is a vector of exogenous variables in regional economy such as 
GNP, national industrial production indices and other national data, E = [ei] is a vector 
of normalized regional gross export coefficients, Z = [zi] is the predicted output (xi are 
observed output values), t indicates the year at which output is predicted.

In order to formalize the difference between the traditional input–output approach 
and Eq. (1), Eq. (1) can be rewritten in matrix form:

where A is the input–output matrix and Y is a vector of aggregated final demand that 
also includes the impact of the exogenous variables noted in (1); the time index is omit-
ted to simplify and all variables change in time. Denote the difference between the 
observed and estimated output as ∆ = ZREIM − X.

Then Eq. (2) can be expressed as:

Equation (4) then can be rewritten with Eq. (5) as:

We can determine the difference between the input–output (IO) and CREIM estima-
tion of outputs as:

By using the power series decomposition of the Leontief inverse, we have:

It is clear that the difference between the traditional input–output estimates and those 
generated by Eq.  (1) from CREIM will be amplified by the structure of the A matrix. 
Therefore, the differences between two estimates are related to the nature of the linkages 
between industries and can be measured by the indirect multiplier effects.

The dynamic equations of CREIM, in which adjustments in output, employment and 
income are made, are specified as autoregressive schemes to turn this model into an 
econometric forecasting model as described in the following equations.

(2)ZREIM = AX + Y

(3)ZREIM = �+ X = AX + Y

(4)ZIM = (I − A)−1Y

(5)�+ X − AX = �+ (I − A)X = Y

(6)ZIM = (I − A)−1Y = (I − A)−1�+ X

(7)ZIM − ZCREIM =

[

(I − A)−1�+ X
]

− (�+ X) =
[

(I − A)−1 − I
]

�

(8)ZIM − ZCREIM =

(

A+ A2 + A3 + · · · + A∞
)

�

(9)log

(

xti
zti

)

= α0 + αz

(

zt−1
i

xt−1
i

)

+ αg g
t
i + εti ∀i = 1, . . . ,N ; ∀t = 1, . . . ,T
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where zt−1
i  is a lagged input–output-generated predicted output and gti  is the set of exog-

enous variables selected to explain the output variables.
Like Eq.  (9) for output variables, the employment equation explains the relationship 

between an industry’s total shipments and total employment. The equation is estimated 
with a dependent variable for the log of productivity. The equation is then normalized to 
isolate employment on the left-hand side.

where nti is employment of sector i at time t, xti  is output of sector i at time t and gti  is the 
set of exogenous variables selected to explain the employment variables.

The final equation in the industry block is the wage equation, also called the income 
equation. This equation describes the relationship between industrial employment and 
income. Again, the relationship is estimated with a dependent variable of the log of the 
ratio of income to employment that is equivalent to earnings per worker.

where yti is income of sector i at time t, nti is employment of sector i at time t and gti  is the 
set of exogenous variables selected to explain the income variables.

Each industry grouping has a variable lag structure shown in Eqs.  (9), (10) and (11), 
and when mixed with the econometric specifications of the final demand and demo-
graphic variables, the complete system of equations is then solved simultaneously and 
recursively (usually by a Gauss–Seidel method4) to determine the forecasted values of 
the endogenous variable. The procedure focuses on (9); the right-hand side can be 
defined as follows:

Hence, (9) can be rewritten as (dropping the time subscript):

Converting βi to a diagonal matrix, β̂i, and utilizing (1), Eq. (9) can be presented as:

or finally as:

(10)log

(

nti
xti

)

= α0 + αz

(

xt−1
i

nt−1
i

)

+ αg g
t
i + µt

i ∀i = 1, . . . ,N ; ∀t = 1, . . . ,T

(11)log

(
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)

+ αg g
t
i + ψ t

i ∀i = 1, . . . ,N ; ∀t = 1, . . . ,T

4  Standard routines using the Gauss–Seidel method are available in most mathematical packages such as Mathematica 
and MATLAB.

(12)βt
i = exp

[
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)
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]

(13)xi = βizi

(14)X =
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βAX +
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βY

(15)X =
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]−1
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Essentially β̂ is a nonlinear, first difference operator that modifies the static Leontief 
inverse into a dynamic one. A set of exogenous variables influence the vector of exports. 
These help define the forecasted Z’s that in turn are used in the system of Eqs. (2)–(8). 
Essentially, the process that equates ZIM and ZCREIM is accomplished by the adjustment 
of the A matrix that, in turn, involves interaction with the whole set of economic–demo-
graphic interactions. Further details can be found in Israilevich et al. (1996, 1997).

3.2 � Continuous‑time modeling5

The use of REIMs, such as CREIM, to study the impacts of structural changes in a 
regional economy and their impacts on emissions inventories is a reasonable choice, 
since interindustry impacts need to be traced and the temporal staging of effects needs 
to be broken out. Most REIMs employed in applied research to date have been specified 
in discrete time for annually based time series. The dynamic equations of the models, in 
which adjustments in output, employment and income are made, tend to be specified as 
autoregressive schemes (see, for example, Eq. 11). For a judicious selection of regressors, 
whether endogenously or exogenously determined, much of the systematic variation in 
the difference between predicted and observed sectoral output can be accounted for, as 
can the variation in sectoral employment and income. Such models can be, and have 
been, used to convey a sense of what impacts are likely to have accumulated 1 year out, 
2 years out, etc. (see Israilevich et al. 1997).

Where such models come up short is in indicating what the transition paths of sectoral 
adjustments would be at points in between the yearly intervals and, as noted above, what 
the short-term impacts of subinterval events would be.6 Of course, one can interpolate 
between solution points, but difference equations, by their nature, characterize what 
transpires at the end of one period and the beginning of the next, not what happens at 
points in between. So there is nothing in the specification of the model to suggest what 
shape an adjustment lag may assume. REIMs may also mislead us about the effects of 
unexpected events. Because the dynamic equations of REIMs are essentially autoregres-
sive data mining constructs, they may not represent causal relations. Hence, some simu-
lations can produce counterintuitive results, where feedback relationships or constraints 
dictated by theory are not present. As discussed above, these properties leave one ill-
equipped to link a REIM with other models, which depict the continuous unfolding of 
events over periods of time that are shorter than the observation or solution interval of 
the REIM.

One response to this situation is to re-specify the model in continuous time. Theo-
retical developments and software availability have permitted approximate and exact 
econometric estimation of linear continuous-time models (of both the structural-equa-
tion and frequency-domain varieties) from discrete-time observations since the early 

5  The first part of this section closely follows Donaghy et al. (2007).
6  A good example of this problem is the modeling of the impact of floods; work by Hewings and Mahidhara (1996) 
revealed that over the course of a year, the negative impacts of the flood were often more than compensated by the 
growth impacts generated by federal and state disaster assistance programs. In this case, having a model that could chart 
the process on a weekly or monthly basis would have been incredibly valuable. In the case of the Katrina impact on New 
Orleans, the need for continuous time modeling in the recovery process was even more compelling, especially given the 
out-migration of one-third of the region’s population and the significant loss of capital stock. See Donaghy et al. (2007) 
for a demonstration of how a continuous-time REIM can be used to model the occurrence and recovery from extreme 
events.
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1970s (Wymer 1972; Bergstrom 1976; Harvey 1989), whereas approximate estimation of 
nonlinear differential equation systems has been possible since the mid-1970s and exact 
estimation since the early 1990s (Wymer 1993, 1997). Recently, continuous-time models 
have been extended to economic growth and convergence studies (Arbia and Paelinck 
2003) and various fields of spatial dynamic modeling (Donaghy 2001; Donaghy and Plot-
nikova 2004; Donaghy et al. 2007; Piras et al. 2007; Oud and Folmer 2008).

The continuous-time approach to specification, estimation and analysis has several 
features to recommend it for modeling structural changes in regional economies and 
their relationship with environmental systems. Continuous-time models provide a bet-
ter characterization of ongoing aggregate economic activity than discrete-time models, 
and permit better handling of mixed samples (i.e., samples including data on stocks, 
flows, derivatives, point observations and period averages). The estimates of continuous-
time system parameters tend to be more efficient than their discrete-time system coun-
terparts (Phillips 1991), and estimates of adjustment parameters, hence adjustment lags, 
are independent of the observation interval. Perhaps most importantly, once the param-
eters of a continuous-time system have been estimated, the model can (in theory) be 
solved for any time interval (on all these well-established points, see Gandolfo 1981). 
There are at least two other potential advantages to putting REIMs into a continuous-
time formulation: (1) it provides an opportunity to introduce explicit functional forms 
suggested by theoretical explanations of events, or adjustment patterns, and to test 
explanations (i.e., to eliminate some of the ‘black box’ character of REIMs) and (2) it 
becomes possible to obtain point estimates of interindustry coefficients at a particular 
time period, even between empirical observations.7

There are some trade-offs in moving from a discrete-time to a continuous-time specifi-
cation. One is that we forego some flexibility in capturing unsynchronized lags and leads 
for the effects of different regressors. Since Allen (1965), however, it has been well appre-
ciated that continuous-time models with second-order (and higher-order) exponential 
lags can capture the shape of a broad spectrum of lag structures likely to be encoun-
tered among macroeconomic phenomena and, further, these lags can be implemented 
in a straightforward manner. For example, assume that at a given point in time, t, the 
underlying theoretical relationship between some endogenous variable, Y(t), and several 
predetermined variables, X1(t), X2(t) and X3(t) is:

in which all variables are in levels and a possible additive stochastic error term is ignored 
for the sake of exposition. A first-order exponential lag relationship can be written as:

in which 1/γ is the mean adjustment lag and D = d/dt is the time differential operator. A 
second-order lag can be written as:

7  See Appendix B of Donaghy et al. (2007) for the derivation of formulas for updating estimates of interregional interin-
dustry sales coefficients in a REIM at a given data point.

(16)Y (t) = αX1(t)X2(t)X3(t),

(17)D log Y (t) = γ log(αX1(t)
β1X2(t)

β2X3(t)
β3/Y (t))

(18)Dy(t) = γ ′γ log(αX1(t)
β1X2(t)

β2X3(t)
β3/Y (t))− γ ′y(t)
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in which y(t) = D log Y(t). This equation can be used as a prototype for dynamic adjust-
ment equations in a continuous-time specification of CREIM.

Information on the structure of the discrete-time CREIM was used to re-specify the 
model in continuous time (i.e., in terms of differential equations). In the interest of 
developing a model with a stable solution in simulations extending well beyond the sam-
ple period, we imposed a negative feedback disequilibrium adjustment relationship in 
each of the differential equations determining the value of an endogenous variable that 
was not an accounting identity. The continuous-time model was estimated with annual 
data for the period from 1969 to 2000.

Because of the size of the overall model and the paucity of time-series observations, 
the model was estimated piecemeal by blocks of equations corresponding to actual out-
put, employment, income, population and final demand using a nonlinear quasi-full-
information maximum-likelihood (FIML) estimator in the program ESCONA of 
Wymer’s (2004) WYSEA package. (See Fig. 1; Wymer (1993) and Donaghy et al. (2007) 
provide details of the estimation algorithm.)8 In estimating each block, some variables 
that were, in theory, endogenously determined in the complete model (and were treated 
endogenously in another block) were of necessity treated as exogenous. The separate 
estimated blocks of equations were then integrated into the omnibus modeling 
framework.

Since out-of-sample values of the exogenous variables are needed to conduct simula-
tions beyond the period for which observations are available, a zero-order forcing func-
tion of time was also estimated for each of the exogenous variables. Assuming that the 
values of the coefficients of the forcing functions should be determined independently 
of the model’s parameters, the forcing functions to be used in generating future values 
of exogenous variables were estimated separately from the other equation blocks in the 
model.

The consistency and overall coherence of the continuous-time model, constructed 
and estimated as indicated in Fig.  1, were checked by obtaining dynamic solutions of 
the integrated estimated model over the sample period and comparing the model solu-
tion values with the observed data, as discussed below. The appropriateness of using the 
model for out-of-sample simulations was checked by obtaining a long-run out-of-sam-
ple dynamic solution to the model based on initial values of the endogenous variables 
and the forcing functions of time representing the exogenous variables. As noted above, 
advantages of employing a continuous-time REIM for conducting out-of-sample simu-
lations are its long-term stability and its ability to be solved at time intervals (perhaps, 
reflecting seasonal effects) that are different from the observation intervals of the data 
used to calibrate it.

For illustrative purposes, Figs. 2, 3 and 4 present the in-sample estimated output var-
iables for an aggregation of the 45 sectors to 6 sectors (resources, construction, non-
durable manufacturing, durable manufacturing, TCU (transportations, communications 

8  We should point out that in large discrete-time regional econometric input–output models, such as CREIM, the major 
blocks of relationships are also estimated separately and then integrated into a complete system. The consistency of such 
an integrated model may be checked, as shown in Israilevich et al. (1997) by deriving an appropriate measure from the 
At matrices extracted for each year. Out-of-sample forecasts can be made with the discrete-time model by using exog-
enous national forecasts to drive the system beyond calibration years.
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and utilities), trade, FIRE (finance, insurance and real estate), services and government). 
The growth trends of the estimation results relative to base year (1970) are provided in 
comparison with the annual observed trends derived from CREIM. Output levels of all 
sectors fluctuated strongly in the 1980s (see Hewings et al. 1998 for explanation), and 
the estimated model captures these dynamics very well.

In Fig. 2, one can see that the aggregate output of the resource sectors increased by 8% 
from 1969 until the early 1980s, after which it decreased steadily until, in 2000, it was 

Fig. 1  Detailed structure of the continuous-time CREIM

Fig. 2  Comparison of growth trend between observed and estimated output (resources, construction and 
trade sector, 1970 = 100)
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5% lower than in the base year. The trend of construction and trade output was upwards 
except for a drop in the early 1980s. Estimated and observed output levels of durable and 
non-durable manufacturing and TCU are portrayed in Fig. 3. Output of durable manu-
facturing decreased in 1980s and was less than that of non-durable manufacturing from 
1970 to 2000. But, both sectors recovered and by 2000 showed 2–4% increases relative 
to the base year. By contrast, the output of TCU increased by 7% as of 1995 but then 
decreased through the rest of the sample period. Figure 4 indicates that, in comparison 
with other sectors, the output levels of FIRE, services and government sectors achieved 
period increases of 9, 10 and 12%, respectively.

Fig. 3  Comparison of growth trend between observed and estimated output (ND non-durables, D durable, 
TCU transportation, communications and utilities sector, 1970 = 100)

Fig. 4  Comparison of growth trend between observed and estimated output (FIRE finance, insurance and 
real estate, services, government sector, 1970 = 100). Note D = d/dt is the time differential operator
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Figures  2, 3 and 4 confirm that the estimated continuous-time CREIM fits the his-
torical database well. Table  1 presents the means and standard deviations of the out-
put variables and the normalized root-mean-square error (RMSE divided by the mean) 
of the in-sample dynamic forecasts for estimated output produced by the model. The 

Table 1  In-sample forecasting errors of the estimated output

Observed Simulated Mean of errors Normalized RMSE

Mean SD Mean SD

CX01 6.387840 0.312508 6.476969 0.001293 0.112766 0.049806

CX02 6.277977 0.387076 5.681334 0.000075 −0.677143 0.137717

CX03 7.013412 0.699505 6.665855 0.216918 −0.281396 0.108573

CX04 8.910463 0.205495 8.502822 0.000001 −0.410755 0.053742

CX05 9.935823 0.112135 9.812420 0.029700 −0.137180 0.019331

CX06 9.435423 0.185292 9.285486 0.000044 −0.177385 0.028263

CX07 5.179133 0.137655 4.855642 0.004081 −0.358681 0.078448

CX08 6.861352 0.175884 6.688479 0.196831 −0.152205 0.031346

CX09 5.431812 0.232009 5.288916 0.326272 −0.147441 0.064315

CX10 6.323547 0.122175 6.335195 0.024656 0.004204 0.017895

CX11 8.286292 0.105048 8.130700 0.030841 −0.176949 0.024052

CX12 9.147910 0.069685 9.064197 0.040835 −0.100626 0.016807

CX13 8.485364 0.315045 8.154482 0.007858 −0.388178 0.062181

CX14 9.257767 0.197613 9.021057 0.000027 −0.283094 0.039872

CX15 8.266818 0.368225 8.052862 0.136990 −0.274047 0.045789

CX16 7.397783 0.126611 7.345958 0.086626 −0.065330 0.024044

CX17 8.600601 0.274037 8.943430 0.002154 0.398542 0.054801

CX18 9.223180 0.096021 9.264224 0.000822 0.039870 0.011317

CX19 9.255457 0.298090 9.174487 0.047452 −0.132644 0.042559

CX20 9.383896 0.274129 9.225769 0.000884 −0.213132 0.041148

CX21 8.583331 0.313788 8.239241 0.002201 −0.404188 0.063751

CX22 7.578318 0.112803 7.307888 0.231641 −0.278283 0.042638

CX23 7.717590 0.050090 7.697480 0.010990 −0.031422 0.009977

CX24 10.293198 0.110411 10.113850 0.000002 −0.208833 0.023825

CX25 9.839345 0.097034 9.651247 0.040837 −0.215872 0.026614

CX26 8.583133 0.274716 8.420237 0.208009 −0.192502 0.025942

CX27 8.159620 0.079651 8.067058 0.028706 −0.107238 0.018165

CX28 5.821819 0.139585 5.670090 0.096731 −0.154815 0.039435

CX29 8.692577 0.119504 8.313626 0.146865 −0.408436 0.055637

CX30 6.308580 0.116929 6.249798 0.012305 −0.047938 0.020655

CX31 4.758786 0.499379 5.086768 0.451522 0.416610 0.168280

CX32 9.065914 0.266160 8.856970 0.106013 −0.267327 0.037896

CX33 7.028178 0.463498 6.780069 0.105582 −0.296482 0.070388

CX34 10.097889 0.395712 9.783757 0.180537 −0.375629 0.045789

CX35 9.660019 0.214611 9.530667 0.000714 −0.152640 0.028051

CX36 10.032803 0.509906 8.936335 0.000027 −1.229428 0.147180

CX37 8.028102 0.179294 7.889365 0.071925 −0.173321 0.028259

CX38 9.467018 0.321673 9.113597 0.093961 −0.395642 0.050498

CX39 7.322753 0.344819 6.808600 0.059709 −0.573756 0.105346

CX40 7.612142 0.367034 7.405184 0.111358 −0.279228 0.056933

CX41 7.626577 0.219598 7.359888 0.047962 −0.310638 0.050289

CX42 8.831879 0.177080 8.680299 0.064821 −0.181949 0.025262
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imposition of the feedback structure (discussed above) may have resulted in RMSEs that 
were, in some cases, higher than could have been obtained with more widely used vector 
autoregressive specifications. However, Table 1 and Figs. 2 through 4 suggest the model 
solution with negative feedback adjustments imposed is consistent with the historical 
data that have been used to estimate REIMs for Chicago. To complete a qualitative anal-
ysis of the estimated model, formal analyses of local and global stability properties and 
sensitivity analyses would need to be conducted.

To examine the model’s suitability for use in dynamic simulations out of sample, we 
solved it forward for 50 years without any policy intervention. While the model can be 
solved for any frequency desired, we highlight the solution at annual intervals. The results 
of this out-of-sample simulation suggest that the model, when linked with an appropriate 
emissions inventory component, will support investigations of the relationships between 
structural changes in a regional economy and changes in emissions inventories.

The solution obtained for this baseline simulation, and portrayed in Fig.  5, sug-
gests that, with the exception of durable manufacturing and TCU, output levels of the 

Fig. 5  Growth trend of out of estimation sample solution for output (2000 = 100)

The preface CX refers to Chicago output; the following number refers to the sectors whose definition is provided in Table 2. 
CXFG and CXSL refer to federal government and state and local government

Observed Simulated Mean of errors Normalized RMSE

Mean SD Mean SD

CX43 8.509383 0.420159 8.504962 0.322716 −0.064855 0.019675

CX44 7.621232 0.120332 7.260127 0.206786 −0.389088 0.065912

CX45 8.081027 0.118887 8.092222 0.071850 −0.006324 0.010464

CXFG 7.164935 0.193000 7.04079 0.11692 −0.153257 0.024560

CXSL 7.752615 0.196951 7.65825 0.15712 −0.123279 0.017269

Table 1  continued



Page 15 of 28Donaghy et al. Economic Structures  (2017) 6:20 

aggregated industrial sectors of the Chicago regional economy will increase steadily. The 
output of the resource sector is predicted to grow by 1.4% relative to its output level in 
2000. The smallest increase, 0.2%, is shown in the construction sector. While in this solu-
tion the output of non-durable manufacturing and trade rises 4 and 1.2%, respectively, 
durable manufacturing and TCU decrease by 1.6 and 2% compared to their base values 
in 2000. Higher growth changes in FIRE, services and government sectors are forecasted 
to increase by 15, 9.8 and 7.7%, respectively.

In the next section, we discuss the integration of the continuous-time CREIM with a 
block of equations characterizing emissions of air pollutants for the Chicago region. The 
integrated modeling system will then be employed to examine potential effects on emis-
sions of structural changes in the economy.

4 � The integrated econometric–emission modeling system9

The strategy for predicting future emissions is to develop an integrated modeling sys-
tem whose solution yields annual emission inventories based on detailed output from 
a continuous-time CREIM (hereafter, CT-CREIM). The detailed output of CT-CREIM, 
for 45 sectors, makes it possible to construct emission inventories that match the 1999 
National Emissions Inventory (NEI99). The basic emission identification of NEI99 is the 
source characterization code (SCC) in which each source category is divided into indus-
try groups and further classified within the source category. The integrated economet-
ric–emission modeling system uses the output of the CT-CREIM to identify SCCs in 
NEI99 for the point and area emission sources and calculates the associated emission 
factors and the activity level. As a first step in this study, we introduce emission intensity 
coefficients, which are based on historically observed emissions and levels of emission 
activities. These coefficients will be used to augment the CT-CREIM model to forecast 
emissions under different scenarios (see Fig. 6).

4.1 � Emission intensity (EMI)

The development of the emission intensity coefficients discussed in this section is 
derived from Tao et al. (2007). In the present study, we consider the seven so-called cri-
teria pollutants on which the US EPA maintains emissions inventories—carbon mon-
oxide (CO), nitrogen oxide (NOx), sulfur dioxide (SO2), particular organic compound 
(PM10 and PM2.5 with diameter less than 10 and 2.5  μm), volatile organic compound 
(VOC) and ammonia (NH3). To analyze the production of emissions stocks, we will 
employ two different types of emission intensity coefficients: those that are assumed to 
be fixed through time and those that are time varying.

We develop future emission inventories in a manner similar to traditional approaches, 
in which emissions are a function of emission intensity (EMI) and levels of emission 
activities:

where EMI is defined by the emissions per unit of activity (ton/million $).

9  Further details may be found in Tao et al. (2007).

(19)Emission = EMI× activity,
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Fig. 6  Overview of the integrated econometric–emission modeling system

Emission intensities are usually calculated from data given in the 1999 National Emis-
sions Inventory (NEI99). Calculating the coefficients from these data has the two advan-
tages that the emission inventories will be available in a generally accepted format and 
the growth factors can be compared easily with other work in this area. To calculate the 
coefficients, the emissions from NEI99 inventories based on Source Classification Codes 
(SCCs) are first mapped into Standard Industrial Classification (SIC) codes. All point 
source SCCs and approximately 16% of area source SCCs can be associated with SIC 
codes. The remaining 80% area SCCs are assigned to a particular SIC following the 
EGAS mapping (Economic Growth Analysis System)10 and an inferential analysis of SCC 
and SIC coding. Note that the remaining 4% of the area sources related to household 
activities and on-road mobile sources are excluded in this research. The point and area 
sources covered here are only 48% of total emission pollutants in the Chicago region. 
The resulting SCC-SIC mapping is then converted to NAICS on which the economic 
sectors of the CT-CREIM are based (see Table 2). In order to support particular thought 
experiments, to be discussed below, the fixed emission intensities, as calculated from 
NEI99, are assumed to remain constant into future. The implication of this assumption 
is that all emission changes result only from activity changes.

To accommodate changes in EMIs related to shifts of energy usage, technological 
change and increasing demand of environmental protection, Tao et al. (2007) also devel-
oped time-varying sectoral emissions intensity coefficients from 1970 to 2002. Time-
varying EMIs were calculated using the NEI Air Pollutant Emission Trend data.11 
Subsequently, the average annual percentage change rate (%) in EMI from each activity 
was calculated using Eq. (17).

where EMIt is EMI for some future year t; EMI0 is base year (1999) EMI; rate is the aver-
age annual EMI change (%); and n is the number of years from 1999. This average annual 
EMI change reflects, collectively, the influence of historical technological, economic 

10  http://www.epa.gov/ttn/chief/emch/projection/index.html.
11  http://www.epa.gov/ttn/chief/trends.

(20)EMIt = EMI0 ×

(

1+
rate

100

)n

http://www.epa.gov/ttn/chief/emch/projection/index.html
http://www.epa.gov/ttn/chief/trends
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Table 2  1999 fixed emissions intensities (EMI) in Chicago region

Industry sector CO NH3 NOx PM10 PM2.5 SO2 VOC

1 Livestock and other ag. products 0.099 8.064 0.067 29.002 5.800 0.034 0.049

2 Agriculture, forestry and fisheries 319.62 0.015 4.981 0.984 0.904 0.464 24.555

3 Mining 1.184 0.001 0.763 6.934 1.716 0.102 0.164

4 Utilities 0.866 1.099 8.196 0.399 0.322 11.737 0.221

5 Construction 1.178 0.001 0.734 1.422 0.342 0.097 0.608

6 Food and kindred products 0.568 0.001 0.463 0.169 0.109 0.253 0.177

7 Tobacco product manufacturing 0.517 0.001 0.129 0.024 0.019 0.032 0.410

8 Apparel and textile products 0.525 0.001 0.129 0.034 0.027 0.064 0.254

9 Leather and leather products 0.533 0.001 0.155 0.032 0.027 0.033 0.480

10 Lumber and wood products 0.559 0.002 0.233 0.212 0.133 0.033 0.781

11 Paper and allied products 0.562 0.053 0.199 0.100 0.077 0.034 1.125

12 Printing and publishing 0.518 0.001 0.123 0.026 0.024 0.037 0.481

13 Petroleum and coal products 0.794 0.086 1.460 0.245 0.204 9.792 3.864

14 Chemicals and allied products 1.437 0.002 0.332 0.152 0.122 0.159 0.774

15 Rubber and misc. plastics products 0.553 0.002 0.148 0.059 0.045 0.034 0.771

16 Stone, clay and glass products 0.936 0.001 1.374 0.582 0.286 3.573 0.130

17 Primary metals industries 10.074 0.002 1.578 1.417 1.264 1.326 1.354

18 Fabricated metal products 0.589 0.002 0.202 0.067 0.057 0.048 1.792

19 Industrial machinery and equipment 0.529 0.001 0.148 0.031 0.028 0.036 0.285

20 Computer and other electric product compo-
nent manufacturing

0.520 0.013 0.129 0.043 0.038 0.043 0.649

21 Transportation equipment manufacturing 0.534 0.001 0.202 0.032 0.027 0.036 0.350

22 Furniture and related product manufacturing 0.532 0.001 0.177 0.092 0.065 0.059 2.850

23 Miscellaneous manufacturing 0.550 0.001 0.137 0.032 0.029 0.055 2.103

24 Wholesale trade 0.662 0.000 0.042 0.019 0.016 0.044 0.065

25 Retail trade 0.662 0.000 0.036 0.013 0.012 0.038 0.130

26 Air transportation 1.479 0.000 0.929 0.029 0.021 0.087 0.293

27 Railroad transportation and transportation 
services

0.466 0.000 3.416 0.094 0.086 0.208 0.152

28 Water transportation 3.957 0.000 29.315 1.394 1.252 4.542 2.706

29 Truck transportation and warehousing 0.061 0.000 0.025 7.197 1.427 0.005 0.211

30 Transit and ground passenger transportation 0.055 0.000 0.002 7.195 1.425 0.000 0.028

31 Pipeline transportation 0.095 0.000 0.105 0.006 0.006 0.000 9.747

32 Information 0.055 0.000 0.003 0.006 0.006 0.000 0.004

33 Motion picture and sound recording industries 0.660 0.000 0.035 0.012 0.011 0.037 0.031

34 Finance and insurance 0.661 0.000 0.036 0.012 0.011 0.037 0.031

35 Real estate 0.670 0.000 0.047 0.014 0.012 0.041 0.032

36 Professional and management services and 
other support services

0.665 0.000 0.049 0.014 0.013 0.043 0.034

37 Educational services 0.787 0.001 0.357 0.037 0.031 0.200 0.042

38 Health care 0.692 0.000 0.102 0.016 0.015 0.052 0.036

39 Social services 0.660 0.000 0.035 0.012 0.011 0.039 0.031

40 Arts, entertainment and recreation 11.892 0.001 0.296 0.165 0.152 0.060 3.498

41 Accommodation services 0.664 0.000 0.043 0.013 0.012 0.038 0.031

42 Food services 0.660 0.000 0.035 0.012 0.011 0.037 0.031

43 Repair and maintenance 0.661 0.000 0.037 0.016 0.014 0.037 0.849

44 Personal and laundry services 0.685 0.002 0.077 0.018 0.016 0.057 2.221

45 Memberships organizations and private house-
holds

0.668 0.000 0.046 0.013 0.012 0.047 0.033

GE Government enterprises 0.223 0.000 0.228 0.099 0.070 0.032 0.284
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and policy changes. For this study, it is assumed that there was no EMI change in the 
future—i.e., rate = 0—if the historical average annual EMI change was positive. The EMI 
change rates listed in Table 3 were then assigned to each CREIM sector.

4.2 � Simulation of the model out of estimation sample

Dynamic simulations of the integrated econometric–emission model were conducted 
by solving the model forward over the period from 2001 to 2050. Initial values of the 
endogenous variables were taken from year 2000 data, and the time paths of the exog-
enous variables were extrapolated from the forcing functions of time, whose estimation 
was discussed earlier. The dynamic simulations were conducted using Wymer’s program 
APREDIC in his WYSEA package, which solves the set of nonlinear differential equa-
tions comprising the model with a variable-step, variable-order Adams method (see 
Shampine and Gordon 1975).

To demonstrate the process of emission inventory development, we conducted a base-
line simulation in which we projected emissions assuming no technological changes in 
the future. In this case, the current fixed emissions intensity coefficients based on the 
NEI99 inventory were used to calibrate a block of emissions equations in the econo-
metric model. Since, in this simulation, any future emission changes are driven solely 
by future industrial activity levels, it is also necessary to conduct a second simulation in 
which time-varying EMIs are used to project future emissions that reflect the effect of 
technological advances in addition to changes in industrial activity levels.

In the case of fixed EMI (illustrated in Fig. 7), emissions of CO, NOx, PM2.5, SO2 and 
VOC increase by 78, 30, 1, 4 and 40%, respectively, by 2050. Only the emissions of PM10 
are reduced by 10%. Compared to projected emissions under the fixed EMI, future EMI 
changes modeled by Eq. (20) using the historic change rates of EMI are shown in Table 3. 
Under the time-varying EMI, the relative contribution to emissions from each industry 
changes at a different pace due to the different technology growth rates. This outcome 
implies that emissions change as a result of the combined effects of economic structural 
change as well as changes in technology- and environment-related policy represented by 
time-varying EMI.

Projected emissions under the assumption of time-varying EMIs are significantly 
reduced, as shown in Fig. 8. Emissions of CO, NH3, NOx, PM10, PM2.5, SO2 and VOC 
are reduced by 57, 92, 60, 55, 47, 35 and 27%, respectively, in comparison with the fixed 
EMI case in 2050. All pollutants except CO experience a steady decline from 1999 to 
2050 under an overall decreasing trend in time-varying EMI. CO emissions are reduced 
by 74% in 2030 but grow again by 2% in 2050 compared with their 1999 level. This result 

Table 3  Average annual EMI change rate (%) in the Chicago region

CO NH3 NOx PM10 PM2.5 SO2 VOC

Resources 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Construction 0.000 −5.644 0.000 −1.680 0.000 0.000 −1.173

Non-durable manufacturing −4.326 −14.669 −2.065 −4.713 −2.230 −3.747 −3.276

Durable manufacturing −2.490 −6.026 −0.554 −5.703 −4.882 −3.918 −2.613

Trade and services −1.070 0.000 −2.369 −1.655 −2.008 −4.292 −3.042
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implies that the future economic structure of Chicago area would contribute to an 
increase in CO emissions by 2050 in spite of the declining trend of time-varying EMI. 
These results will be discussed in more detail in the analysis of the sectoral percentage 
distribution of projected emissions.

Fig. 7  Projection of seven air pollutant emissions (tons) in the Chicago area under fixed EMI

Fig. 8  Projection of seven air pollutant emissions (ton) in the Chicago area under time-varying EMI
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Figures 9, 10 and 11 present profiles of pollutant emissions for the 9 different aggre-
gate industry groups under the two different assumptions about emissions intensity. In 
1999, the base year (see Fig. 9), resources, durable manufacturing and TCU accounted 
for the largest shares of overall pollution emissions. For example, resources contributed 
25% of all CO emissions, 51% of NH3 (51%), 25% of PM10, while TCU generated 43% 

Fig. 9  Percentage distribution of seven air pollutant emissions in the base year (1999)

Fig. 10  Sectoral percentage of seven air pollutant emissions in 2050 under the fixed EMI
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of NH3 (43%), 51% of NOx, 30% of PM10 and 21% of PM2.5. Durable manufacturing was 
a significant contributor to CO (29%), PM2.5 (33%) and VOC (38%) emissions while the 
service sector accounted for 16% of total CO and 14% of total VOC emissions. Assuming 
EMIs do not change from their 1999 values, it is projected that CO emissions produced 
by durable manufacturing and resources will drop significantly while TCU remains 
the leading producer of NH3, NOx and SO2 emissions (see Fig.  10). Note that, in the 
fixed coefficients scenario, overall emissions from the FIRE and service sectors increase 
significantly.

In comparison with the fixed EMI, the relative contribution to emissions from each 
industry activity changes under the time-varying EMI (see Fig.  11). PM10, PM2.5 and 
VOC emissions from resources almost double and, on the other hand, durable and non-
durable manufacturing experience significant reductions in emissions; thus, their contri-
bution to total emissions decreases remarkably. Notwithstanding the EMI improvement 
under the assumption of time-varying EMI, there are two similar results with the fixed 
EMI assumption. One is that TCU remains the important source of emissions of NH3, 
NOx and SO2. The other finding is that FIRE and services assume a growing portion of 
CO and VOC emissions.

5 � Decomposition of the emissions inventory
5.1 � Emission technology effect and production effect

Table  4 summarizes the classification of the scenarios that focus on two categories of 
EMI and two for technological change. The main purpose of the decomposition of emis-
sions inventories is to analyze the relationship between the economic structural changes 
and emission technology effect of the projected emission inventory. As expected, the 
simulations indicate that the Chicago economy as a whole will continue growing, but the 

Fig. 11  Percentage distribution of seven air pollutant emissions in 2050 under the time-varying EMI
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economic structure will continue to change in this region through 2050. These changes 
will be apparent in the changing demand for energy; the changes also reflect the different 
demand and supply relations among the economic sectors over time. On the other hand, 
technological change in emissions will shift energy usage in industries and consumers. 
Technological advances will result in a less polluting set of output across industries. 
At the same time, many policy instruments for environmental protection and regula-
tion will have increased to achieve greater emission reduction since climate change and 
cleaner air are issues for political moment. Similar analyses have been employed to dif-
ferentiate technological change from changes in demand in economies over time (see 
Feldman et al. 1987).

These two economic and environmental features are combined in the simulation 
results of future emission inventory in the previous section; no attempt was made to 
differentiate the effects of changes in economic structure and the evolution of emission 
technology in the Chicago area. To understand which factor plays a more significant role 
in changing the emission inventory now and in the future, the differences between struc-
tural changes in production and changes in emission technology affecting the emission 
coefficients will be separated. The production effect and emission technological effect 
are defined by the following relationships:

where Qjt is production in sector j in time t; Qj99 is production in sector j in 1999; Ekjt is 
the EMI of k pollutant in sector j in time t; and Ekj99 is the EMI of k pollutant in sector j 
in 1999.

Then, the total effect (TE) can be derived from the sum of production and technology 
effect:

Now it is possible to determine which effect is more influential in contributing to the 
total emission inventory by using a simple ratio of the technology and production effects. 
It should be noted that the technology effect does not show a positive value because var-
ying EMI assumes that emission technology will be advanced in the future.

Figure  12 depicts the potential relationships. If the ratio of technology and produc-
tion effect (hereafter called TCE/PE) is less than zero and greater than −1, an increas-
ing trend of production makes the emission inventory grow more even though the 

(21)Production Effect = PEjt =
(

Qjt ∗ Ekj99
)

−
(

Qj99 ∗ Ekj99
)

(22)Technological Effect = TCEjt =
(

Qjt ∗ Ekjt
)

−
(

Qjt ∗ Ekj99
)

(23)

TEjt = PEjt + TCEjt

=
{(

Qjt ∗ Ekj99
)

−
(

Qj99 ∗ Ekj99
)}

+
{(

Qjt ∗ Ekjt
)

−
(

Qjt ∗ Ekj99
)}

=
(

Qjt ∗ Ekjt
)

−
(

Qj99 ∗ Ekj99
)

Table 4  Scenario summary

Scenarios

EMI Fixed Time varying

Technological change None Varying None Varying
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developed emission technology affects the emission inventory. In the case where TCE/
PE is between zero and 1, both technology and production effects contribute to decrease 
the emission inventory, but the decreasing trend of production is more dominant than 
the enhanced technology effect. On the other hand, if TCE/PE is greater than 1, the 
decreasing emission inventory is more affected by the technology effect than the falling 
level of production. In contrast, a higher technology effect causes the emission inventory 
to decrease even though the level of production is increasing when the ratio of TCE to 
PE is less than −1.

Table 5 shows the classification of the decomposition effects according to the defini-
tion of the ratio between technology (TCE) and production effect (PE). Since all of time-
varying EMI are assumed to be zero or negative, the focus will be on the two cases that 
are shaded in Table 5. One is the case where emissions increase because the technology 
effect cannot prevail over the dominant production effect despite advanced technology 
(−1 < TCE/PE ratio < 0). The other one is where emissions decrease since the technol-
ogy effect dominates the growing production effect (TCE/PE ratio < −1).

5.2 � Results

With the detailed sectoral emission decomposition with 2050 projected emission inven-
tory, the comparisons between the dominant production and technology effects are 
shown in Tables  6 and 7. First of all, CX38 (health care), CX33 (motion picture and 
sound recording industries), CX46 (federal government enterprise), CX40 (art, enter-
tainment and recreation), CX37 (educational services), CX43 (repair and maintenance), 
CX42 (food services), CX41 (accommodation services), CX44 (personal and laundry 
services), CX26 (air transportation) and CX34 (finance and insurance) are categorized as 
the sectors that affect the increased CO emissions through dominant production effects. 

TIME

EMISSION
Qjt*Ekj99

Qjt*Ekjt

TECHNOLOGICAL EFFECT = TEC
Qj99*Ekj99

PRODUCTION EFFECT = PE
TOTAL EFFECT = TE

Fig. 12  Graphical decomposition of emission inventory

Table 5  Classification of decomposition effects

Production effect (PE)

Negative Positive

Technology effect (TCE) Zero Emission ↓ Emission ↑ PE dominant

Negative |TCE| > |PE| Emission ↓ Emission ↓ TCE dominant

|TCE| < |PE| Emission ↓ Emission ↑ PE dominant
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Some manufacturing sectors, for example, CX09 (leather and leather products), CX10 
(lumber and wood products) and CX11 (paper and allied products) play a significant 
role in increasing NOx emissions. There is no sector in which the dominant production 
effect influences the NH3 emissions’ increase in 2050. In general, the results highlighting 
a dominant production effect could be interpreted as implying that growing production 
from some services and FIRE industries is responsible for increased future emissions 
regardless of their advanced technology effect.

Table 6  Emission inventory decomposition in  2050: sectors for  a dominant production 
effect

The sector definitions can be found in Table 2

CO NOx NH3 PM10 PM2.5 SO2 VOC

CX38 CX43 CX33 CX44 CX34 CX44

CX33 CX42 CX46 CX26 CX26

CX46 CX41 CX40 CX34 CX34

CX40 CX11 CX37

CX37 CX44 CX43

CX43 CX26 CX42

CX42 CX10 CX41

CX41 CX09 CX44

CX44 CX34 CX26

CX26 CX34

CX34

Table 7  Emission inventory decomposition in  2050: sectors for  a dominant technology 
effect

CO NOx NH3 PM10 PM2.5 SO2 VOC

CX04 CX35 CX35 CX18 CX35 CX04 CX04

CX18 CX18 CX18 CX35 CX18 CX35 CX35

CX35 CX08 CX05 CX05 CX08 CX18 CX18

CX08 CX32 CX08 CX08 CX32 CX08 CX05

CX32 CX39 CX39 CX32 CX39 CX39 CX08

CX39 CX25 CX25 CX39 CX25 CX25 CX32

CX25 CX45 CX45 CX25 CX45 CX45 CX39

CX15 CX47 CX38 CX15 CX47 CX47 CX25

CX11 CX38 CX33 CX11 CX15 CX38 CX45

CX45 CX33 CX15 CX45 CX38 CX33 CX47

CX10 CX46 CX40 CX10 CX33 CX46 CX38

CX09 CX40 CX37 CX09 CX46 CX40 CX33

CX47 CX37 CX11 CX47 CX40 CX37 CX46

CX15 CX43 CX38 CX11 CX15 CX15

CX42 CX37 CX11 CX40

CX41 CX43 CX43 CX37

CX10 CX10 CX42 CX11

CX09 CX42 CX41 CX43

CX44 CX09 CX10 CX42

CX26 CX41 CX09 CX41

CX34 CX44 CX10

CX26 CX09
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Meanwhile, with advanced technology, a lowered EMI yields decreased CO emis-
sions in CX04 (utilities), CX35 (real estate), CX08 (apparel and textile products), CX09 
(leather and leather products), CX10 (lumber and wood products), CX11 (paper and 
allied products), CX15 (rubber and miscellaneous plastic products), CX18 (fabricated 
metal products), CX24 (wholesale trade), CX25 (retail trade), CX32 (information), CX39 
(social services), CX45 (membership organization) and CX47 (state and local govern-
ment enterprise) although the production activity of those sectors will have increased by 
2050 (first column in Table 6).

For the case of all 7 pollutant emissions, CX08 (apparel and textile), CX15 (rubber and 
miscellaneous plastic products), CX18 (fabricated metal products), CX25 (retail trade), 
CX35 (real estate), CX39 (social services) and CX45 (membership organization) are 
common sectors that demonstrate higher technology effects to reduce these emissions 
even though there will be increased production effects. Note that for CX04 (utilities), 
there is a significant technology effect on the decreased emission inventory of CO, SO2 
and VOC. Also, CX35 (real estate) shows the highest technology effect on NOx, NH3 
and PM2.5 emissions than any other sector.

Even if the emissions’ technology could be advanced through new technological pro-
gress and policy regulations that mandate lower levels of pollution, it is obvious that ser-
vices and FIRE sectors produce more pollution indirectly because of their increasingly 
dominant role in the volume of production in the future Chicago economy according 
to the result of this decomposition analysis. Hence, it is important to highlight which 
economic activity is more responsive to decreases in the emission inventory associated 
with their emission technology progress. In particular, Table 7 reveals that CX04 (utili-
ties), CX05 (constructions), CX08 (apparel and textile), CX15 (rubber and miscellaneous 
plastic products) and CX18 (fabricated metal products) will generate a large technology 
effect overall on the seven emission pollutants; these findings suggest that more direct 
approaches in technology development or policy instruments focused on these sectors 
would contribute most to the reduction in future emission pollutants in Chicago.

6 � Conclusions
In order to analyze the issues of environmental impacts and economic structural change, 
an integrated econometric–emission model in continuous time has been developed to 
project future emissions to reflect Chicago regional changes in both emission genera-
tion and the structure of the economy. The CREIM was re-specified and re-estimated 
as a continuous-time model (CT-CREIM). One of the major advantages is that the CT-
CREIM provides the opportunity to extend the forecasting period beyond that currently 
available with the more traditional regional econometric input–output systems that rely 
on national exogenous forecasts that have a more limited time horizon. In addition, 
the CT-CREIM can be used to estimate intra-annual impacts (e.g., seasonal pollutant 
generation).

Using CT-CREIM, an economic–environmental interface was created with two types 
of emission intensity (EMI), 1999 fixed EMI based on the 1999 National Emission 
Inventory (NEI) and a time-varying EMI, a measure that takes into account changes 
in environmental technology and policy. Although on-road mobile sources are a major 
contributor to total emissions, they were excluded in the estimated emission intensities 
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in order to focus on the interaction between technological change and structural change 
within the Chicago economy. The CT-CREIM integrated econometric–environmental 
model provides the links to develop and interpret the complex demand–supply relation-
ships with pollutant emissions.

By establishing the relationships between emissions and economic activity for each 
sector in this integrated model, the results indicate that resource, durable manufac-
turing and TCU sectors played dominant roles in overall pollution emissions in 1999. 
According to the forecasted emission under 1999 fixed EMIs, CO emissions produced 
from durable manufacturing and resources experience a considerable decrease while 
TCU remains the important contributor to emissions of NH3, NOx and SO2. Compared 
with the fixed EMI scenario, forecasted emissions under the assumption of time-varying 
EMIs revealed a trend in which increased PM10, PM2.5 and VOC emissions are generated 
by resources, but durable and non-durable manufacturing undergo a dramatic reduc-
tion in overall emissions. Based on these detailed sectoral emission projections, TCU 
dominates the production of NH3, NOx and SO2 emissions and FIRE and services should 
be considered as the indirect generation of CO and VOC emissions in the future. This 
finding only indicates that some polluting industry sectors reduce their direct emis-
sion and other non-polluting sectors such as FIRE and services increases their share of 
total emissions. Therefore, further attempts should be made to disaggregate their effects 
into direct and indirect effects on pollution generation in order to understand how the 
process of structural changes evolves in transforming emission sources in the Chicago 
region.

One highlight of this analysis is the decomposition of the technology and production 
effects on future emission inventories. By differentiating structural changes in produc-
tion from changes in emission technology affecting the emission coefficients, this analy-
sis found that fast-growing production from services and FIRE industries accounts for a 
large share of the increased future emissions regardless of technological advances in pol-
lution reduction. This finding suggests that services and FIRE industries are important 
indirect sources of emission pollution. In contrast, higher technology effects to reduce 
the emissions are found in CX04 (utilities), CX08 (apparel and textile), CX15 (rubber 
and miscellaneous plastic products), CX18 (fabricated metal products) and CX35 (real 
estate) even if their production effects increase.

The most important contribution of this study is the development of an integrated 
system that characterizes both the changing structure of the economy and changes in 
emission intensity. However, the ability of the model to support long-range emissions 
forecasting depends heavily on the stability of the estimated model and assumptions 
about the evolution of EMIs. This being the case, future research should investigate the 
sensitivity of the model’s stability to changes in specification or parameterization and 
alternative ways to represent emissions generation in the model.
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