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1  Introduction
Reconciling1 data from different sources to compile multi-regional input–output (MRIO) 
databases is the task of finding a balanced MRIO table that closely matches all considered 
data sources. This task can be formulated as a mathematical optimisation problem
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For this formulation, an arbitrary MRIO table T is vectorised into the vector τ . The vec-
tor τ 0 is the vectorised MRIO prior to the reconciliation process, and the optimal solu-
tion τ ∗ represents the final MRIO after the reconciliation. The function f is the objective 
function which measures the departure of τ from τ 0 during the reconciliation process. 
The matrix M holds the linear mathematical constraints, and the vector c contains the 
corresponding external or superior data. The final table τ ∗ must adhere to the equation 
Mτ

∗ = c . The vectors l and u contain upper and lower bounds for every element of the 
MRIO.

Restricting the constraints set to linear constraints does not pose a problem in MRIO 
reconciliation, as most conditions that are posed on the MRIO table elements by supe-
rior data (such as balancing, adhered to sector totals, matching an aggregated table) can 
be interpreted as linear constraints.

The formulation given in Eq. (1) also includes reliability data for τ 0 and c , given in the 
vectors σ

τ
0 , and σ c . We are following the interpretation of the reliability data as it has 

been proposed in previous publications [see, for example, Lenzen et al. (2010)]. That is, 
each element of an MRIO table is interpreted as the expected value of a normally dis-
tributed random variable, with the standard deviation being a measure for the reliabil-
ity of each value. Hence, each element in τ 0 is accompanied by a value for its standard 
deviation, and these values are pooled in the vector σ

τ
0.

The objective function f typically measures the deviation between the original unbal-
anced and the balanced estimate.

From a mathematical viewpoint, it is usually the problem that defines which objective 
function should be used to measure this deviation. For example, in order to minimise 
the travelled distance between two arbitrary points on a plane, a standard Pythago-
rean distance measure is applied. If the ways on which one can travel across the plane 
are restricted, for example by a road, then the Pythagorean measure does not suit the 
problem anymore, and the distance between two points must be measured so that the 
possible pathways between the two points of interest are considered correctly. After all, 
one cannot walk straight through a building! Only once the correct objective function is 
found, an appropriate algorithm to find the shortest way can be chosen.

This pathway towards finding the appropriate objective function for compiling MRIOs 
has been somewhat reversed: suitable algorithms were developed first, and their math-
ematical understanding grew in subsequent years.

Over the decades, two mathematical approaches prevailed for the task of data rec-
onciliation during MRIO compilation. These can be broadly classified as cross-entropy 
methods and quadratic programming (QP) methods. In this paper, we are proposing a 
new algorithm for a least-squares approach, which falls into the category of QP methods.

The idea of using a least-squares objective function was first proposed in Stone et al. 
(1942). It was further developed into a fully quadratic model by Byron (1978, 1996) and 
van der Ploeg (1982, 1984, 1988), who also introduced error terms to control uncertain-
ties [see also Harrigan and Buchanan (1984), Morrison and Thumann (1980)]. In order 
to motivate this function, van der Ploeg distinguishes between so-called soft and hard 
constraints in the matrix M and the vector c.

(1)
min
τ

f (τ , τ 0, σ
τ
0 , σ c) subject to Mτ = c, l ≤ τ ≤ u.
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In the following, mT describes the transposed of the vector m , where the different mT
i  are 

the rows of M . Each row in mT
i  in M and its corresponding value ci in c represent one con-

straint. As a preparatory measure, the aim is now to identify for each row of M if it presents 
a so-called hard or soft constraint. The index s is used as the counter for the soft constraints, 
and the index h is the counter for the hard constraints.

A row mT
s  of M and the corresponding value cs of c are considered a soft constraints, if for 

the corresponding standard deviation σ c,s �= 0 holds (standard deviation for the superior 
data point is not zero). Consequently, mT

h  and ch form a hard constraint if σ c, h = 0 . Plainly 
speaking, a soft constraint is a constraint that can remain unfulfilled (within the limits 
defined by the standard deviation), whereas hard constraints must be adhered to perfectly.

Hard constraints are typically the so-called balancing constraints, which ensure that the 
final MRIO adheres to the condition that the total output of each sector must equals the 
sector’s inputs. Other data, such as national statistical data or international trade data, 
do not have to be adhered to perfectly, and this is represented by the positive values in 
σ c,s �= 0 , which is the condition for a soft constraint. For example, the GDP for a country is 
never perfectly reliable, and a deviation by a few per cent does not render the final table as 
faulty. However, official statistics data should of course be adhered to as much as possible.

The soft and hard constraints can then be pooled in different matrices, splitting the origi-
nal matrix M into separate matrices. Let Msoft only contain soft constraints and Mhard only 
contain hard constraints. The vector c is split into csoft and chard accordingly.

Using this concept, van der Ploeg introduces error terms εs to the soft constraints, which 
account for the deviation from the corresponding value in csoft,s.

Van der Ploeg elegantly reinterprets these error terms. Let ε = (ε1, . . . , εS)
T be the vec-

tor of all error terms, then

where I ∈ R
S×S is the unity matrix. Note that error terms are only applied to soft con-

straints. The hard constraints are introduced to this notation by

where 0H×S is a matrix with all-zero elements of dimension H × S , in which H is the 
total number of hard constraints and S is the total number of soft constraints. By 
defining

mT
soft,s τ = csoft,s + εs.

Msoft τ = csoft + ε

⇐⇒ Msoft τ − ε = csoft

⇐⇒ Msoft − I

(
τ

ε

)

= csoft ,

(2)
(

Mhard 0H×S

Msoft − I

) (
τ

ε

)

=

(
chard
csoft

)

,

(3)p :=

(
τ

ε

)

and σ p :=

(
στ

σ c

)

,
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Equation (2) can be rewritten as

The elements of the MRIO, now represented within the vector p , may also be subject to 
boundary conditions. The most common boundary condition is the non-negativity con-
dition, which ensure that financial transaction in an input–output table can usually not 
be negative (with a few exceptions).

Van der Ploeg defines the full reconciliation problem as

Hence, the objective function that is used here is a weighted least-squares function, with 
the standard deviation values serving as the weights.

Here, the hat operator σ̂p0 depicts the diagonalisation of the vector σ p0 . It should be 
pointed out that van der Ploeg’s formulation elegantly reinterprets the reliability values 
for the constraint values in csoft as inverted reliability values for the error terms ε . Note 
also that the error terms are unbounded, that is l ∈ (R ∪ {−∞})N and u ∈ (R ∪ {+∞})N . 
Note further that due to its construction the values in σ p0 cannot be 0, and an inversion 
and squaring of the values as it is carried out in σ̂−2

p0
 does not pose a numerical problem.

This reconciliation problem fulfils the form given in Eq. (1), since the reliability data 
for both the MRIO elements and the superior data are considered.

2 � RAS‑type cross‑entropy methods and the quadratic programming approach
Thus far, the discussion around the compiling MRIO matrices identified two different 
types of algorithms that were considered for this task: quadratic programming algo-
rithms and RAS-type methods, which are specialised cross-entropy methods. RAS-
type methods have so far enjoyed more attention, but there are fundamental differences 
between the development of the algorithm presented in this paper and the algorithms 
summarised in the family of RAS-type methods.

Stone (1961) presented RAS as a calculation method for one task only: balancing a 
matrix according to given row- and column totals. It took another 9 years before Bacha-
rach (1970) discovered that RAS is in fact an optimisation method that solves a version 
of the problem given in Eq. (1). The original RAS method is limited to balancing con-
straints only, it can only handle positive elements in the matrix (in our case: the MRIO), 
and it can neither consider reliability information nor boundary conditions. To cater 
for various needs such as these, the algorithm has been modified and extended numer-
ous times. For example, Gilchrist and Louis (1999) presented a three-stage RAS (TRAS) 
aimed at allowing the consideration of partially aggregated data, Junius and Oosterhaven 
(2003) presented a generalised RAS (GRAS) that allowed positive and negative elements 
within the MRIO. Mínguez et al. (2009) proposed the CRAS algorithm which takes into 
account additional information when a time series of MRIO tables is available. The most 
recent extension of RAS was presented by Lenzen et al. (2010). Their Konfliktfreies RAS 

(

Mhard 0H×S

Msoft − I

)

︸ ︷︷ ︸

=:G

(
τ

ε

)

︸︷︷︸
=:p

= c,

(4)min
p∈RN

(p− p0)T σ̂
−2
p0

(p− p0) subject to Gp = c and l ≤ p ≤ u.
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(KRAS) allows the use of arbitrary constraints and the use of reliability data for both 
the MRIO elements and the superior data. KRAS is the first RAS-type method capable 
of solving the problem given in Eq. (1). Lahr and de Mesnard (2004) and Lenzen et al. 
(2010) gave detailed overviews of the different RAS variants.

The development of RAS and its extensions was usually driven by the need of solv-
ing the reconciliation problem for a certain class of constraints. The mathematical 
interpretation of the method usually followed after the development of the method 
itself. Although this incremental development approach has enabled steady progress 
in MRIO compilation capabilities, the process of analysing the RAS modifications 
can be tedious. Such rigorous mathematical analyses allow for rational comparison of 
algorithms and informed reconciliation methodologies. In the case of the most recent 
RAS development—KRAS—the mathematical interpretation has not been carried out 
yet and the objective function of the algorithm remains unknown.

In contrast, QP-based algorithms provide a robust mathematical base. However, 
a general-purpose, single-step QP algorithm for MRIO compilation is currently not 
available.

A number of large-scale global MRIO databases such as Eora, EXIOBASE, WIOD, 
and GTAP [see Tukker and Dietzenbacher (2013)] were developed over recent years. 
These databases require large amounts of input data from varying sources. This inevi-
tably leads to conflicting information during the data processing stage. Due to the 
amount of data to be considered during the reconciliation and the—compared to 
RAS-type approaches—relatively high complexity of van der Ploeg’s QP approach, the 
developers of these databases have so far employed QP-type approaches—if at all—
only for subproblems during the data reconciliation stage. For example, EXIOBASE, 
EXIOBASE2, and EXIOBASE3 were compiled using multi-step reconciliation pro-
cesses. Some of the intermediate steps in this processes were completed using QP-
type algorithms, with the final global balancing step being carried using a RAS-type 
algorithm (Wood et al. 2014, 2015; Stadler et al. 2018).

The mathematical effects of mixing both RAS-type and QP-type reconciliation 
techniques in a multi-step process have so not been examined. To the authors’ knowl-
edge, only the Eora database is reconciled using a reconciliation method that consid-
ers all available input data in a single-step reconciliation process (namely the KRAS 
method). While this removes any potential effects of using a multi-step process on 
the data quality, a mathematical analysis has not been carried out for KRAS.

Thanks to its rigorous mathematical properties, the quadratic approach proposed 
by van der Ploeg (1982, 1984, 1988), Harrigan and Buchanan (1984) and Morrison 
and Thumann (1980) has attracted some attention. Canning and Wang (2005) noted 
its flexibility and use it to construct an IRIO model. However, the lack of efficient and 
easy-to-use methods and algorithms for the use of this approach with larger MRIO 
tables and their corresponding dimensionality has prevented a more widespread 
adoption. But, as mentioned above, partial uptake of QP-type methods has occurred. 
In general, the dimension of practical reconciliation problems such as the construc-
tion of the global MRIO databases mentioned above is too large for general, single-
step quadratic optimisation algorithms.

In this paper, the authors present a mathematical optimisation method that is
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•	 based on van der Ploeg’s approach and is hence based on a robust mathematical 
theory,

•	 is able to consider arbitrary linear constraints during the reconciliation of MRIO 
databases, and

•	 uses mathematical and computational parallelisation in order to allow for it to be 
applied to large-scale MRIO databases of equal or greater size than the currently big-
gest MRIO databases in existence.

To the authors’ knowledge, this is the first algorithm that fulfils these three requirements 
and it hence firstly overcomes the problems discussed above and secondly allows for the 
application of a quadratic reconciliation approach to large-scale MRIOs.

The algorithm is motivated by starting from a mathematical formulation of the prob-
lem of reconciling an MRIO subject to a set of arbitrary constraints. Exploiting the struc-
ture of this formulation (in particular by interpreting the constraints geometrically), the 
authors present an algorithm that solves the given problem. In this paper, we will exploit 
the structure of the system to develop such an algorithm and apply it to reconcile one 
the global MRIO databases: the Eora model (Lenzen et al. 2012, 2013).

The remainder of this paper is organised as follows: Sect. 3 states the requirements for 
a least-squares algorithm designed to reconcile large MRIO databases, the ACIM algo-
rithm is presented in Sect. 4, the implementation is described in Sects. 5 and 6 contains 
conclusions.

3 � Requirements for a least‑squares algorithm to reconcile large MRIO 
databases

System (4) is split into two subsystems: the soft constraints matrix is very large, but very 
sparse (a typical row may contain only a few nonzero values), while the hard constraints 
matrix represents balancing constraints, which are present more structure (though also 
denser). In this paper, we propose to use a splitting algorithm. Such algorithms allow one 
to solve subsystems independently from each other and use these solutions to construct 
a new iterate. Using this approach, we will then develop strategies for each of the soft 
and hard constraints. The idea of using a splitting algorithm for matrix reconciliation 
problem was suggested, for example, by Nagurney and Eydeland (1992).

A least-squares algorithm designed to solve the problem given in Eq. (4) must be able 
to handle large amounts of data, and to provide an accurate solution within an accept-
able time frame. In the case of Eora, the vector τ has around 109 entries and the matrix G 
has around 106 rows. Together, the complete set of input data for the problem in Eq. (4) 
occupy more than 80 GB of space. In order to accommodate for this amount of data, we 
design an algorithm to be run in parallel on a HPC cluster. This will enable the simulta-
neous reconciliation of subproblems and hence reduce runtime. Splitting methods are 
particularly well suited to a HPC environment, where each subsystem can be solved in 
parallel. At the same time, the algorithm features a number of mathematical accelera-
tion measures that ensure faster convergence. In order to achieve this, certain geometric 
properties of the individual rows of G are considered during the calculation process.
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Our findings show that given the size and complexity of the reconciliation task at 
hand, both the computational parallelisation and the mathematical accelerations must 
be applied when designing the ACIM algorithm.

For the optimisation problem given in Eq. (4), define

Then Eq. (4) simplifies to

Therefore, for the sake of simplicity, σ−2 is ignored at this point. It is further assumed 
that the reformulation of the problem in order to obtain the form described in Eq. (5) 
has been carried out.

Hence, the problem simplifies to

The vector p0 is the initial estimate of the problem, and l and u are the vectors of lower 
and upper bounds, respectively. Throughout this section, G will be an (M × N )-dimen-
sional matrix. Therefore, p, l,u ∈ R

N and c ∈ R
M . It will be further assumed that for the 

rows ‖gm‖ of G the equation �gm� = 1 holds for all m = 1, . . . ,M.

Definition 1  (Defect and Residual) Let p∗ denote the solution of the problem given in 
Eq. (6); hence, Gp∗ = c and l ≤ p∗ ≤ u hold. Let pk be an iterate generated by 
an iterative optimisation algorithm in the kth iteration step. Then

Unless otherwise stated, � · � denotes the Euclidean norm.

4 � The ACIM algorithm
We base our algorithm on related algorithm presented in Scolnik et al. (2000). This algo-
rithm has all the characteristics described in the previous section and is shown to have 
promising convergence behaviour. This algorithm is based on Cimmino’s algorithm and 
can be described as follows: the system Gp = c is split into k subsystems (or blocks) 
(G1p = c1, . . . ,Gkp = ck) . The splitting of the original constraints matrix G and the cor-
responding right-hand side vector c serves two purposes:

1.	 Prepare the problem for the computational parallelisation by splitting G and c into 
blocks (or subproblems) that will later be processed in parallel, and

z = σ
−1p

z0 = σ
−1p0

and A = Gσ .

(5)min
z∈RN

(z − z0)T (z − z0) subject to Az = c and σ
−1l ≤ z ≤ σ

−1u.

(6)min
p∈RN

(p− p0)T (p− p0) subject to Gp = c and l ≤ p ≤ u.

δk := pk − p∗ is called the defect of the k-th iteration, and

rk := Gpk − c is called the residual of the k-th iteration.
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2.	 Design each subproblem so that it can be solved efficiently

Solving the subsystems G1p = c1, . . . ,Gkp = ck is the most time-intensive part in each 
iteration. At the same time, the proposed algorithm allows for these subsystems to be 
solved independently. Hence, each subsystem will be assigned to a separate computing 
core, and the subsystems can therefore be solved in parallel, which reduces the runtime 
of the algorithm tremendously.

In order to decide on how we split G and c , we must understand which algorithms we 
will use to construct ACIM. By understanding the strengths of the different algorithms, 
we can then design a blocking concept for G and c such that the resulting subproblems 
are tailored to exploit the strengths of ACIM and it components.

ACIM is a nested algorithm, consisting of three individual algorithms, paired with 
mathematical acceleration measures. We will first present the different algorithms that 
make up ACIM, and then present the acceleration measures, and finally, using the les-
sons learned from the different algorithms, we will present the blocking approach.

Before we start looking at the individual algorithms, it is worthwhile looking at the 
geometric interpretation of the constraints sets

4.1 � Geometric interpretation of the constraints set as hyperplanes

We will only present a shortened version of the theory behind hyperplanes. For more 
information, the reader may wish to refer to standard linear algebra literature such as 
Fischer (2000). It is helpful to take a closer look at the constraints Gp = c of Eq. 6. Let gm 
be an arbitrary row of the matrix G and let gm �= 0 hold. The constraint corresponding to 
the m-th row of G is given by

where p∗ , p∗ ∈ R
N is a solution of this constraint. Then, the set

defines a hyperplane of dimension RN−1 . And we obtain

Lemma 1  (Orthogonal projection onto a hyperplane) Let p ∈ R
N be a vector and let 

Hg,c ⊂ R
N be a hyperplane defined by the vector g ∈ R

N and the value c ∈ R. Then, the 
orthogonal projection pp of p onto Hg,c is given by

 and pp ∈ Hg,c holds.

Proof  Available in any standard literature on linear algebra, for example Fischer (2000). �

gTmp
∗ = cm ,

Hgm,cm = {p ∈ R
N | �gm,p− p∗� = 0}

pp = p+
c − �g,p�

�g�2
g,
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Remark 1  Lemma 1 also holds if p is already part of the hyperplane Hg,c . In this case, p 
and its projection pp are identical, i.e. p = pp.

Remark 2  Any solution p∗ for the problem given in Eq. (4) lies in the intersection

of the hyperplanes defined by the rows of G and c.

4.2 � The components of ACIM

ACIM follows the concept of Cimmino’s algorithm (see Fig. 1), which will be presented first.

Algorithm 1  (Cimmino’s Algorithm) Define α > 0 , ε > 0 , and wm , m = 1, . . . ,M with 
∑M

m=1 wm = 1 . Choose an initial estimate p0 . It is further assumed that �gm� = 1 for all 
m = 1, . . . ,M.

0.	 Initialise k = 0

1.	 Project pk onto each hyperplane: pkp,m = pk + (cm − gTmp
k)gm.

	 pkp,m is the corresponding projection of pk onto the hyperplane defined by the mth 
row gTm of matrix G , m = 1, . . . ,M.

2.	 Compute the barycentre of all projections: pkb =
∑M

m=1 wmp
k
p,m.

3.	 Compute the new iterate: pk+1 = pk + α(pkb − pk).
4.	 If Gpk+1 − c < ε , a solution has been found. Set p∗ = pk+1 and terminate the algo-

rithm.
	 If Gpk+1 �= c set k = k + 1 and return to Step 1.

It is shown by Scolnik et  al. (2000) that the algorithm converges (although it is not 
actually shown in Scolnik et al. (2000), it is easy to verify that the algorithm terminates 
after at most m iterations in a typical conjugate direction manner. However, here we 
apply it as an iterative algorithm) (Fig. 1).

The main step in this algorithm is the projection step 1, and our aim is to make this 
projection step as efficient as possible. In order to achieve this, we will attempt to split 
G into blocks such that the projection onto each of these blocks is robust and fast. This 
block projection will be carried out by Kaczmarz’s algorithm (Fig. 2).

Algorithm 2  (Kaczmarz’s Algorithm) For a problem of the form

choose an initial estimate p0 . Set m = 1 , k = 0 , and define the following iteration 
procedure

p∗ ∈

M⋂

m=1

Hgm,cm

(7)min
p∈RN

(p− p0)T (p− p0) subject to Gp = c
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Step 1

 If Gpk+1 = c , terminate the algorithm with the solution pk+1.

	 If Gpk+1 �= c , set k = k + 1 and

Step 1.1 Set m = m+ 1 if m < M or
Step 1.2 Set m = 1 if m = M,

	  and return to Step 1. Note that M is the number of constraints.

Kaczmarz’s algorithm uses elements that were already present in Cimmino’s algo-
rithm: orthogonal projections onto hyperplanes. But Kaczmarz’s algorithm only projects 
onto one hyperplane per iteration. Hence, if the hyperplanes were all orthogonal to one 
another, individual projections carried out in one iteration would not be voided by sub-
sequent projections. The projection onto the next hyperplane would occur on the hyper-
planes that previous iterations projected onto. Hence, Kaczmarz’s algorithm can find a 
solution for a linear system very efficiently if the hyperplanes of the problem are orthog-
onal to one another. The blocking algorithm will be based on the approach to build indi-
vidual blocks that only contain hyperplanes that fulfil this condition.

(8)pk+1 = pk +
cm − �gm,p

k�

�gm�2
gm.

Fig. 1  Visualisation of Cimmino’s algorithm. This figure shows the concept of Cimmino’s algorithm for a 
two-dimensional problem with two constraints for the iteration step k → k + 1 . In this case, the parameters 
were defined as w1,2 = 0.5 and α = 1.5 . The dashed black lines indicate the orthogonal projections of pk 
onto the hyperplanes, and the dashed orange line indicates the calculation of the barycentre pkb . A choice of 
different weights w1,2 would result in the barycentre pkb being shifted along the dashed orange line
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While Cimmino’s and Kaczmarz’s algorithm both focus on the system of linear con-
straints, the boundary conditions are not considered. In order to ensure that the boundary 
conditions are met, we will use Hildreth’s algorithm. The boundary conditions are given by

Hildreth’s algorithm (Hildreth 1957) (in combination with Cimmino’s algorithm) offers 
a way of considering the boundary constraints. This algorithm has been used by Har-
rigan and Buchanan (1984) and shown to work well for solving the problem at hand with 
inequality constraints such as the ones presented in this paper.

Algorithm 3  (Hildreth’s Algorithm for Box Constraints) Let pk be the current iterate 
and let l,u ∈ R

N be the lower and upper boundaries for the box constraints such that

is required. Then, Hildreth’s algorithm is given by the following iteration: 

Step 1	� For each element pkn, ln,un , n = 1, . . . ,N  of the vectors pk , l,u define 

Step 2	� Set pk+1 = pk + (p̂k+1 − p̂k)

l ≤ p ≤ u.

l ≤ pk ≤ u

(9)p̂k+1
n =







ln if pkn ≤ ln
pkn if ln ≤ pkn ≤ un
un if pkn ≥ un

.

Fig. 2  Visualisation of Kaczmarz’s algorithm. This visualisation shows the concept of Kaczmarz’s algorithm, 
with two hyperplanes. The initial estimate p0 is projected onto the first hyperplane, yielding p1 . The first 
iterate p1 is then projected onto the second hyperplane and so forth. Contrary to Cimmino’s algorithm, the 
iterates produced by Kaczmarz’s algorithm will always adhere to at least one of the constraints given by the 
rows of the matrix G . Although the convergence appears to be a lot faster for this simple example, it can 
be extremely slow for larger problems in higher dimensions. The algorithm will therefore only be used for a 
certain class of subproblems that occur during the projection step of Cimmino’s algorithm
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4.3 � Blocking the problem in subproblems

As described before, the blocking algorithm is aimed at splitting the system of linear 
constraints given by G and c into blocks of hyperplanes that are orthogonal to one 
another. The aim is to use Kaczmarz’s algorithm on each of these blocks to obtain 
an exact solution for each of the subproblems within a very short time. The con-
straints matrix G features the so-called balancing constraints, which are represented 
by densely populated, near-orthogonal rows in G , and other constraints which are 
sparsely populated. Additionally, the number of other constraints usually greatly out-
numbers the balancing constraints. Since the balancing constraints present a near-
orthogonal constraints set, they will be bundled in a single block G1.

For the remainder of the matrix, we propose to exploit the sparsity of the matrix to 
build blocks of orthogonal rows. The concept of matrix splitting is relatively straight 
forward. The splitting algorithm successively loops over all rows of G that are not 
assigned to G1 , performing the following steps.

1.	 Test the current row gm against all rows that have previously been assigned to the B 
blocks Gb , b− 1, . . . ,B . If a block is found in which gm is orthogonal to all previously 
assigned rows, add gm to this block.

2.	 If in each existing block Gb there is at least one row that is not orthogonal to gm , then 
open a new block GB+1 and assign gm to it as its first row.

The vector c is split accordingly into vectors cb , b = 1, . . . ,B.
The condition to detect orthogonality is: two rows of G are considered orthogonal 

if they do not share any nonzero coefficients in the same columns. This condition is 
stricter than the general concept of orthogonality, but it is numerically easy to achieve 
and proved sufficient for this application. This procedure will generate a set of orthog-
onal blocks Gb on which Kaczmarz’s algorithm can be applied to find an exact solu-
tion in a finite number of steps.

The aim of blocking the matrix G is to reduce the computational efforts and storage 
requirements when implementing the final algorithm.

Definition 2  (Block Projection) The orthogonal projection of a vector p onto the sub-
space of hyperplanes defined by the rows of a block Gb is called a block projection. A 
block projection will be referred to as pp,b (unlike the projection over a onto a single 
hyperplane, which was defined as pp in Cimmino’s algorithm).

For a block projection pb , the equation Gbpp,b = cb holds. Hence, pp,b lies within the 
intersection of all hyperplanes defined by Gb and cb.

Remark 3  Kaczmarz’s Algorithm 2 delivers this orthogonal projection for each orthog-
onal blocks Gb , b = 2, . . . ,B in one iteration. Note that G1 is not generally orthogonal as 
it contains the balancing constraints.
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4.4 � Accelerating Cimmino’s algorithm

Cimmino’s algorithm relies on a step length, defined by the parameter α . Scolnik et al. 
(2000) proposed a technique to calculate the ideal step length in order to minimise 
the distance of the new iterate and the final solution. Using the direction

of the kth iteration, Scolnik’s approach is based on the idea that the line f (α) given by 
step 3 of Cimmino’s algorithm

has a unique point at which the defect δk+1 is minimal. Hence, Scolnik’s line search 
approach is

Let α∗ be the solution to Eq. 10. Then, the next iterate pk+1 is given by

Figure 3 shows the concept of Scolnik’s acceleration.

Theorem 1  (Solution for Scolnik’s Line Search) Scolnik’s line search problem given in 
Eq. 10 has a unique solution given by

 The vector pkp,b denotes the projection of pk over the block Gb, wb is the corresponding 
block weight, and B is the total number of blocks.

Proof  See Scolnik et al. (2000).�  �

4.5 � The accelerated Cimmino algorithm (ACIM)

Using the concepts introduced in this section, the final algorithm for the reconcilia-
tion of large contingency tables can be stated. It is assumed that the problem is avail-
able in the form

Algorithm 4  (ACIM: Main Algorithm for Parallel MRIO Reconciliation) Assume that 
�gm� = 1 for all m = 1, . . . ,M.

dk = pkb − pk

f (αk) = pk + αkd
k

(10)min
αk

∥
∥f (αk)− p∗

∥
∥.

pk+1 = pk + α∗
kd

k = pk + α∗
k (p

k
b − pk).

α∗
k =

B∑

b=1

wb�p
k
p,b − pk�2

�pkb − pk�2
=

B∑

b=1

wb�d
k
b�

2

�dk�2
.

min
p∈RN

(p− p0)T (p− p0) subject to Gp = c and l ≤ p ≤ u.



Page 14 of 24Geschke et al. Economic Structures             (2019) 8:2 

ACIM combines Cimmino’s Algorithm and the acceleration measures presented in this 
section into a single algorithm. The ACIM’s workflow is

1.	 Block the matrix G into the balancing block G1 and orthogonal blocks Gb , 
b = 2, . . . ,B . Define the first iterate (this is the vectorization of the raw data table).

2.	 Apply Hildreth’s Algorithm to the iterate to obtain a vector that is located within the 
given boundaries.

3.	 Perform one step of Cimmino’s Algorithm by projection the current iterate onto the 
B blocks. Use Kaczmarz’s Algorithm to calculate the individual blocks projections.

4.	 Calculate the barycentre from the B different block projections and calculate the 
direction vector.

5.	 Use Scolnik’s acceleration to find the ideal steps length for the given direction and 
calculate the next iterate. Step back to Step 2 to start the next iteration.

A full mathematical description of the ACIM algorithm can be found in “Appendix”.
The ACIM algorithm generally alternates between two different calculations: 

Step 1	� Ensuring that the boundary conditions l ≤ p ≤ u are adhered to. This is 
achieved by performing Hildreth’s algorithm.

Step 2	� Creating a sequence of iterates that converges towards a solution of Gp = c . 
This is achieved by performing Cimmino’s algorithm on the matrix blocks Gb 
and by using Scolnik’s acceleration.

Fig. 3  Visualisation of Scolnik’s acceleration. The optimal line search parameter α∗ yields the new iterate 
pk+1 . Due to the construction of Scolnik’s acceleration, the vector 

(
pk+1 − pk

)
 is perpendicular to the vector 

(
pk+1 − p∗

)
 (indicated by the green dashed line)
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 Both of these steps are necessary to find a solution for the original problem given in 
Eq. (4). However, the sequence of iterates calculated using the ACIM algorithm may 
not cause a smooth convergence to the solution of the problem. The reason is that a 
vector that solves the constraints equation Gp = c may not fulfil the boundary condi-
tion l ≤ p ≤ u . Adjusting a vector pk to the bounds condition using Hildreth’s algorithm 
maybe therefore make a previously feasible solution for Gp = c unfeasible. The ACIM 
algorithm will find a solution for the problem given in Eq. (4) if such a solution exists. 
However, it might be useful not to alternate the use of Cimmino’s algorithm (includ-
ing accelerations) and Hildreth’s algorithm in every iteration of the ACIM algorithm. 
Instead, Cimmino’s algorithm can be used to find a solution for Gp = c , followed by an 
adjustment of this solution to the condition l ≤ p ≤ u by Hildreth’s algorithm. If this 
adjusted solution does not solve Gp = c , the Cimmino algorithm will be restarted.

This concept results in the performance of several iterations of Cimmino’s algorithm 
between two iterations of Hildreth’s algorithm. This technique will be used in the follow-
ing section. We will refer to this concept as a certain number of Cimmino iterations per 
Hildreth iteration.

5 � Implementation and results
The ACIM algorithm 4 was programmed in parallel in C, using OpenMP for the paral-
lelisation. The implemented version of ACIM will be referred to as the ACIM code.

5.1 � Parallelisation of the ACIM code

Within the ACIM algorithm, two tasks can be parallelised.

•	 The block projections. The calculation of the block projection over each block Gb 
yielding a vector pkp,b for each block.

•	 The computation of the barycentre pkb =
∑B

b=1 wbp
k
p,b.

Implementing these steps in parallel will have significant consequences for the memory 
requirement of the ACIM code, as all block projections pkp,b must be stored in parallel. 
Calculating the block projections and the barycentre in one step is theoretically possible, 
but a racing condition would be met if different threads attempt to add values to the 
memory allocated for the barycentre vector pkb . It is possible to avoid data racing by forc-
ing parallel threads to write into a certain location in memory sequentially. This option 
was explored for the ACIM code in order to save memory, but it was found that the per-
formance gain obtained from the parallelisation was lost due to this measure. Hence, 
different block projections must be saved in memory at the same time. This impacts the 
system design for the parallelisation.

Since a potentially large number of block projections pkp,b must be added up during the 
calculation of the barycentre, a shared-memory architecture was chosen for the parallelisa-
tion of the ACIM code. A high-performance computing system with 12 hyperthreaded 3.4 
GHz cores and 296 GB of fully shared memory is available for the execution of the ACIM 
code.
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5.2 � ACIM code: parallelisation of the block projections

For the Eora model, the blocking algorithm generates more blocks Gb than processors avail-
able. The calculations of the block projections are arranged within a for-loop which is paral-
lelised using OpenMP. The fact that there are more blocks than available computing cores 
has significant implications on the memory management. Limiting the number of threads 
results in each thread getting assigned a certain amount of block projections, which are cal-
culated by the thread sequentially. Hence, it is possible to sum up the block projections cal-
culated by one thread within a single variable without risking data racing.

The sum of all block projections that were calculated by a single thread will be referred to 
as a thread projection pk ,t . The index t indicates which thread the thread projections were 
calculated by. The total number of threads is given by the variable T. Hence, t = 1, . . . ,T .

The ACIM code only requires to save as many vectors in memory as there are threads, as 
opposed to saving as many vectors in memory as there are blocks. For the Eora model, each 
block projection requires about 4 GB of memory. If 24 threads calculate the block projec-
tions in parallel, around 100 GB of memory is occupied by the 24 thread projections.

5.3 � ACIM code: parallelisation of the barycentre calculation

The thread projections were programmed to already contain the weighted sums of the indi-
vidual block projections, and the barycentre pkb is given by

Depending on the size of the MRIO table, the vectors pk ,tp  can be very large. Addition-
ally, depending on the system resources, a large number of thread projections may exist 
at the end of the execution of the parallel code region. Since in C the summation of 
different vectors must be programmed element-wise, a large number of individual ele-
ment-by-element summations may have to be executed. Parallelisation can be used as 
an attempt to speed up this process. However, unlike the parallel block projections, the 
parallelisation of the sum given in Eq. (11) can involve the risk of creating a racing condi-
tion, if programmed inappropriately. In order to avoid a racing condition, each thread 
adds the elements of all thread projections that lie in the same row of the vector, to the 
corresponding element of the barycentre. Figure 4 illustrates the parallelised, element-
wise summation. The workflow of the parallelised ACIM code is shown in Fig. 5. 

5.4 � Numerical testing: using the ACIM code for the Eora Model

This section documents the use of the ACIM code for the reconciliation of the latest ver-
sion of the Eora model for the year 2000 Lenzen et al. (2012, 2013). The reconciliation data 
set for the Eora model has the following dimensions.

(11)pkb =

T∑

t=1

pk ,tp .

Number of elements in the iterate: 557,041,584
Number of constraints: 3,517,796
Number of nonzero elements in matrixG: 5,334,387,811
Total size of input data files: 80.2GB
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Fig. 4  This figure visualises the parallel summation of the thread projections in order to obtain the 
barycentre. In this example, three threads are randomly assigned to calculate the entire sum of all 
corresponding values pk,tp,n , t = 1, . . . , T  to obtain pkb,n . A racing condition is avoided since each thread 
operates on its own location in memory when saving pkb,n

Fig. 5  Parallelisation of one iteration of the ACIM code. The red elements refer to mathematical 
manipulations, and the yellow elements represent variables. Parallel Block 1 calculates the thread projections 
in parallel. In Parallel Block 2, the individual thread projections are added up in parallel to form the barycentre
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The algorithm was executed on a custom-built high-performance computing clus-
ter with 12 hyperthreaded 3.4 GHz cores, offering a total of 24 threads and 296 GB of 
fully shared RAM. The ACIM code was executed using 24 threads. The maximum RAM 
usage was approximately 170 GB, and the code split the matrix G into 242 blocks. The 
termination criterion for the Cimmino iterations was reached once the norm of the nor-
malised residual was below 100. The total runtime of the ACIM code required in order 
to reconcile the Eora MRIO was just under 3 h.

Figure 6 shows the development of the residual norm for the Eora model for Cim-
mino iterations only (no boundary adjustment by Hildreth iterations). Despite the 
size of the problem, the residual norm decreases at a very high rate, especially during 
the first iterations, and reaches the termination criterion after only 13 iterations.

The next step is to introduce Hildreth iterations to the calculations (Fig. 7). The plot 
shows an oscillating behaviour of the residual norms over the iterations. This is once 
again due to the fact that once the Cimmino iterations have found a feasible solution 
and terminate, a Hildreth step is performed in order to ensure that the boundary con-
ditions are adhered to. The resulting iterate causes a residual norm that is above the 
termination criterion, and hence, Cimmino iterations were restarted. Figure 8 shows 
only the residual norms obtained from Hildreth iterations. Each iterate belonging 
to these residual norms adheres to the boundary conditions. The iterates converge 
smoothly towards a feasible solution, and the ACIM code terminates.

Table 1 shows the minimum runtime for three different sections of the ACIM code 
within one iteration.

It is noteworthy that the calculation of the balancing constraints requires a large 
portion of the entire runtime for the calculation of the block projections. In order to 
speed up the ACIM code in the future, most of the attention should be directed to 
speeding up the balancing process.

Also, Table 1 shows that the ACIM code finishes the balancing task for the entire 
Eora model  in less than 80 s (if no bounds are defined at Hildreth’s algorithm does 
not have to be used). This is a significant improvement in performance compared to 
earlier methods such as RAS.

Fig. 6  This plot visualises the residual norms of the ACIM code for the Eora problem. Only Cimmino iterations 
were carried out, no Hildreth iterations. The code terminates after only 13 iterations
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Fig. 7  This plot visualises the residual norms of the ACIM code for the Eora problem. A maximum of 100 
Cimmino iterations were allowed between two Hildreth iterations. Both the Cimmino- and the Hildreth 
iterations were terminated when a residual norm of less than 100 was achieved

Fig. 8  This plot visualises the residual norms of the Hildreth iterations of the ACIM code, for the Eora 
problem. Each of the residual norms belongs to an iterate adhering to the boundary conditions

Table 1  Runtime results of the ACIM code for the Eora model

Code section Duration (s)

Block projections (all orthogonal blocks) 80.74

Balancing constraints 73.98

Parallel summation 5.28



Page 20 of 24Geschke et al. Economic Structures             (2019) 8:2 

6 � Conclusions and outlook
We have presented a parallelised least-squares-type algorithm (ACIM) for the recon-
ciliation of large MRIO databases. ACIM uses the combination of mathematical accel-
eration measures and parallel programming executed on high-performance computing 
hardware to achieve a acceptable runtimes. To our knowledge, the ACIM algorithm is 
currently the only least-squares algorithm that is capable of reconciling global MRIOs of 
the size of the Eora database with satisfactory accuracy and runtime.

Future research will focus on enhancing the speed and accuracy as well as the numeri-
cal robustness of the ACIM algorithm further. Similar to current version of the ACIM 
algorithm, this will be achieved by a combination of introducing further computational 
measures and mathematical features. As a first step, the parallelisation of the code will 
be optimised in order to improve the load balancing and ultimately the overall per-
formance of the ACIM code. The introduction of libraries such as Intel’s Math Kernel 
Library2 (MKL), the Basic Linear Algebra Subprograms3 (BLAS) or CHOLMOD4 to the 
code, will reduce the runtime further. Additional mathematical features will include the 
introduction of additional, more efficient accelerations as well as more efficient use of 
the geometric structure of the different constraints given in matrix G.
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Appendix: The ACIM algorithm
The variable names used in Algorithm 4 are identical to those introduced throughout 
this paper. For the reader’s convenience, a summary of the variable names used within 
the Main Algorithm is stated before the algorithm.

Dimensions and counters

k	� Iteration counter.
N	� Length of vector p ; number of elements in the MRIO plus the number of soft 

constraints.
n	� Counter for N-dimensional objects; 1 ≤ n ≤ N .
M	� Total number of constraints.
m	� Counter for m-dimensional objects; 1 ≤ m ≤ M.
B	� Total number of blocks. This variable grows as the blocks are generated during 

the blocking algorithm. B remains unchanged once the total number of blocks 
has been calculated.

b	� Counter for the blocks; 1 ≤ b ≤ B.
Mb	� Number of rows in block b. The block Gb has the dimension RMb×N.

Scalars, vectors and matrices

pk	� Current iterate in iteration step k. The vector pk has the length N.
pkp,b	� Projection of the iterate pk onto the bth block Gb.
pkp	� Barycentre of all block projections in the kth iteration step.
G	� Constraint matrix of the problem.
Gb	� bth block of G.
l	� Vector of lower boundaries; l ∈ R

N.
u	� Vector of lower boundaries; u ∈ R

N.
dk	� Search direction of the kth iteration.
dkb	� Block direction of the bth block in the kth iteration. dkb = pkp,b − pk.
α∗
k	� Optimal step length for Scolnik’s line search.
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Algorithm 5  (ACIM: Main Algorithm for Parallel MRIO Reconciliation)
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Theorem 2  (Convergence of ACIM) The Main Algorithm 4 converges towards the solu-
tion to the problem

Proof  See Scolnik et al. (2000).�  �
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