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1  Introduction
Since the last couple of decades, energy has been serving not only as an international 
commodity but also as an important financial product. Most of the existing literature 
considers global energy structure as energy commodity whereas only a thin strand 
of literature also acknowledges its financial attributes. Energy possess features of 
both commercial as well as financial attributes and because of its increasing demand, 
it represents itself as a long-run potential and strategic investment for international 
investors. A careful and well-diversified investment in the energy sector can act as an 
effective hedging approach to mitigate volatile energy prices and therefore, attracts 
international investment community. Due to heterogeneous distribution of energy 
resources, energy companies in different countries seek international cooperation 
to access more resources. According to Lim and Lam (2014), investments in energy 
sector in the emerging economies witness increasing importance not only due to 
escalating commercial value but also for balancing energy structures and ensuring 
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local energy security. Since the global financial crises of 2008–2009, a significant re-
adjustment in the global energy structure is witnessed with more offerings towards 
the growing trend of diversification. However, attributable to diverse nature of energy 
policies, resources endowment, investment environment and geopolitics with varying 
political relationship between countries, cross-border energy investment relationship 
reflects different characteristics.

Existing literature documents the presence of energy as financial commodities, both 
in a portfolio (see Ghorbel and Trabelsi 2014; Pan et al. 2016; Rehman et al. 2019) and 
as a combination of these energy assets with traditional stocks (Chen et al. 2010; Mensi 
et al. 2013; Balcilar et al. 2015; Shahzad et al. 2019). Besides trading only in cash market, 
these energy commodities are also traded in the form of energy future contracts using 
ETC’s (Exchange Traded Commodities), with former providing the advantage of lever-
age (Chng 2009; Lu and Jacobsen 2016). In case of increasing capital market integration, 
combination of traditional equity with energy-related stocks presents a viable option to 
hedge energy specific risks (Khalfaoui et al. 2015; Basher and Sadorsky 2016).

The emergence of energy stocks provides an additional avenue of investment and 
research as a new asset class to investors and scholars, respectively. However, the oppor-
tunity of investing in such energy asset class is not risk free and therefore requires suit-
able hedging or safe haven assets to unwind the associated portfolio risk. Kumar et al. 
(2012) investigate the relationship between fossil fuel commodities with clean energy 
investments and report that fuel prices affect returns of clean energy stocks. In another 
study, Broadstock et al. (2012) use time-varying correlation to capture the sensitivity of 
Chinese energy stocks to fossil fuel prices and report strong association following the 
subprime crises of 2007–2008. These results imply that Chinese energy-related stocks 
amongst the emerging economies exhibit sensitivity to global oil shocks. The discussion 
on energy investment structures from a global perspective is gaining utmost importance; 
however, existing literature is rich in terms of studies highlighting the specific disinte-
grated energy sources focusing on both local and global energy situations, for example, 
in terms of energy production (Armaroli and Balzani 2007) and supply (Balat and Balat 
2009), energy consumption (Guo and Fu 2010) and its use (Neto et  al. 2014), energy 
security (Yergin 2006), energy trade (Wälde and Gunst 2002), energy market (Kleit 
2001), etc.

Though existing literature provides rich evidence on the relationship between tra-
ditional equity markets, interrelationship amongst alternative energy-related equi-
ties highlights future avenue of research mainly attributable to an increasing interest 
by investors and researchers. There are few studies which highlight the relationship 
between returns of alternative energy market assets, for example, Miralles-Quirós and 
Miralles-Quirós (2019) highlight that alternative energy ETF’s outperform energy ETF’s 
thereby providing an alternative investment option for investors. Sadorsky (2012) anal-
yses relationship between clean energy and technology companies’ stocks and reports 
that stocks’ prices of clean energy equity are more correlated with technology stocks as 
compared with international oil prices. Similarly, discussion amongst energy equity or 
between energy and other stocks includes Henriques and Sadorsky (2008), Mollick and 
Assefa (2013), Efimova and Serletis (2014), Maghyereh et al. (2017) and Kyritsis and Ser-
letis (2018).
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More recently, the United Nations climate change conference held in Paris, 2015, 
emphasised on making investments in clean energy sector for development and meeting 
ever increasing challenges posed by the climate change. Though private investments in 
renewable energy sector are gaining importance over time, long-run interest of investors 
relies on the financial risks and profitability of renewable energy companies. The price 
fluctuation of energy assets is considered as one of the main energy-related risk factors 
affecting the financial performance of energy investment projects; however, according 
to Kumar et al. (2012) and Reboredo (2015), viability of sustainable energy investments 
also depends on economic grounds. The cheapest and quickest way to reduce energy 
consumption is through increased energy efficiency, sometimes called an “invisible fuel” 
with a potential for further improvements in energy efficiency. Investment in energy 
sector often remains uncertain due to the uncertainty regarding their returns. An exist-
ing strand of literature discusses under investment in energy efficiency also known as 
a “paradox” of “energy efficiency gap” (DeCanio and Watkins 1998; Sola and de Paula 
Xavier 2007; Schleich 2009; Granade et  al. 2009; Thollander and Ottosson 2008; Ven-
mans 2014; Brunke and Blesl 2014). Energy Return On Investment (EROI) is a concept 
that helps in aligning economic and biophysical perspective by addressing the potential 
suitability of energy sources to their returns on net available energy to industrial society 
(see Cleveland et  al. 1984; Hall et  al. 1986). However, this EORI presents some issues 
in its definition and measurement, thus requiring separation of the system boundaries. 
With such process-based analysis, the interlinkages between respective components and 
the complexity of wider economic system can render problems in definition of the clear 
internal boundaries.

Existing literature provides rich evidence of cointegration approach in measuring 
integration amongst different financial assets. Majority of this work includes Johansen 
(1991) and Escribano and Granger (1998) techniques (see Candelon et al. 2013; Ghosh 
and Kanjilal 2016; Bondia et al. 2016). Other approaches consider time-varying proper-
ties of return to measure stock market integration including dynamic conditional corre-
lation, copulas and wavelets (Christoffersen 2012; Creti et al. 2013; Khalfaoui et al. 2015; 
Salisu and Oloko 2015).

For returns integration between our sampled alternative energy markets, we apply 
extension of wavelet approaches. Traditional wavelet approaches are used extensively in 
existing literature due to their capability to measure correlation in time–frequency space 
with phase difference providing information about delays and synchronisation between 
co-movement of given series (Mensi et al. 2018, 2019; Al-Yahyaee et al. 2019). However, 
standard wavelet correlation estimates and compares large number of wavelet and cross-
wavelet correlations. The application of multiple wavelet correlation comprises a single 
set of multiscale correlation pattern which makes relationship not only easier to analyse 
and interpret but also provides better insight of an overall statistical relationship about 
multivariate relationship.

Our contributions in this study are as follows. First, our study is an effort to investi-
gate portfolio diversification opportunities amongst different alternative energy finan-
cial markets. The selection of alternative energy market is based on growing investment 
in this sector and our sample consists of a unique combination of alternative energy 
assets in the form of different equity indices. Second contribution comes in the form 
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of methodological aspects where we decompose returns by applying maximal overlap 
discrete wavelet transformation approach which helps in analysing multiscale features 
of time series with capability of oversampling the data unlike traditional DWT. This 
decomposition of returns is helpful in extracting implications for short- and long-run 
investors which is an important aspect of this study. Third, we use decomposed series for 
estimating rolling window wavelet correlation followed by analysing bivariate, non-lin-
ear causality. Therefore, based on portfolio diversification amongst different global alter-
native energy assets, our work benefits from novel methodological extensions of wavelet 
techniques with implications for short- and long-run investors. Finally, our analysis 
makes use of the pre- and post-crises period that are commonly known to affect most 
of our sampled markets. Such breaks in our sample period allow to see the presence of 
contagion in equity markets and its effect on short- and long-run investment horizons.

Our results highlight that alternative energy markets of Emerging and BRIC offer max-
imum diversification opportunities when combined with the World, Developed, G7 and 
EU alternative energy equity markets. Such pair-wise combinations highlighted above 
exhibit low return correlation across entire sample period with little traces of contagion 
phenomena during a series of crises period. Rest of the paper is structured as follows. 
Section 2 presents applied methodology. Section 3 explains variables, data sources and 
preliminary analysis. Section 4 presents analysis and discussion followed by Sect. 5 con-
cluding our study.

2 � Methodology
To test the relationship between our sampled global alternative energy indices, we make 
use of several novel techniques, details of which are as follows.

2.1 � Wavelet decomposition

According to Gençay et al. (2002), discrete wavelet transform (DWT) is capable of han-
dling non-stationary time series in a combined time-scale domain. The application of 
maximal overlap discrete wavelet transform (MODWT) is one of the most commonly 
used algorithms due to its advantages over traditional DWT (see Percival and Walden 
2006). This is because of its ability to handle samples of any size unlike the traditional 
DWT which restricts sample size up to 2J, where J represents layers of decompositions. 
Another feature of MODWT is its invariability to circular shifting of time series which 
the traditional DWT lacks. Finally, though, both DWT and MODWT are capable of 
analysing variance based on wavelets and scaling coefficients, the variance estimators of 
MODWT analysis are comparatively more asymptotically efficient (Percival and Mofjeld 
1997; Gençay et al. 2002; Percival and Walden 2006; Polanco-Martínez and Fernandez-
Macho 2014; Polanco-Martínez and Abadie 2016).

In this study, we decompose1 daily log return values by applying MODWT using 
Daubechies least asymmetric wavelets (LA) with filter of length L = 8, i.e., LA(8) (Gençay 
et al. 2002; Daubechies 1992). Value of maximum decomposition level, i.e. J is derived 
using log2(N) translated into a maximum level of 10 in our case. Since the number of 

1  The MODWT decompositions will be made available to the readers upon request.
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feasible wavelet coefficients becomes critically small for high levels, we select wave-
let analysis with J = 8 to avoid boundary coefficients. In this way, the MODWT gives 
us eight wavelets and one scaling coefficient, i.e. ω̃1,t , . . . , ω̃8,t and ν̃8,t , respectively. For 
rolling window wavelet correlation (RWWC) explained in later section, we select J = 4; 
however, it is technically possible to estimate RWWC up to 5th level but the results in 
the form of high variability do not provide useful information. The scale of wavelet coef-
ficient, i.e. ω̃t,j , is defined by the level of transformation. For estimations in our case for 
all families of Daubechies, the level j coefficients are associated with changes at effective 
scale �j = 2j−1 days. Furthermore, the MODWT utilises an ideal band-pass filter within 
the frequency interval of [ 1/2j+1, 1/2j] for the scale 1 ≤ j ≤ J. By inverting the frequency 
range and multiplying it by an appropriate time unit ∆t, i.e. 1 day in our case, we obtain 
equivalent periods of [ 2j , 2j+1] ∆t days under the scale level of 1 ≤ j ≤ J. In our study 
under the daily frequency data, the wavelet scale coefficients λj (j = 1,…,8 are linked with 
time horizon changes of 1, 2, 4, 8, 16, 32, 64 and 128 days, respectively) are associated 
with 2–4  days’ (intra week), 4–8  days’ (weekly), 8–16  days’ (fortnightly), 16–32  days’ 
(monthly), 32–64  days’ (monthly to quarterly), 64–128  days’ (quarterly to biannual), 
128–256 days’ (biannual) scale and 256–512 days’ (biannual to annual) scale.

2.2 � Rolling window wavelet correlation

To analyse the relationship between our sampled global alternative energy returns at dif-
ferent time periods, we compute MODWT wavelet correlation following the work of 
Gençay et al. (2002). We present the unbiased wavelet correlation for scale �j between 
two time series X and Y as

In the above expression, γ̃XY
(

�j

)

 represents the unbiased estimator of wavelet covari-
ance between market coefficient W̃Y ,jt and W̃Y ,jt whereas σ̃ 2

X

(

�j

)

 and σ̃ 2
Y

(

�j

)

 are the unbi-
ased estimators of wavelet variances X and Y, respectively, associated with the scale �j . 
We define the unbiased wavelet variance estimator based on MODWT as

where W̃ 2
j,t represents jth level of MODWT coefficient for X, Lj =

(
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)
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represents length of scale �j (wavelet filter) and Ñ = N − Lj + 1 represents number of 
coefficients not affected by the boundary. We use the work2 by Witcher and Onwue-
gbuzie (1999) to construct confidence interval 100(1  −  2p)% for wavelet coherence. 
An expression for 100(1  −  2p)% confidence interval for wavelet coherence is given 
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2  Witcher and Onwuegbuzie (1999) present classical results of Fisher Z-transformation of correlation coefficient.
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standard normal distribution and h (ρ̃XY ) = tanh
−1

(ρ̃XY ) denotes the Fisher Z-transfor-
mation (Whitcher et al. 2000; Gençay et al. 2002).

To analyse temporal variation of wavelet correlation, we employ a dynamic measure, 
i.e. rolling window wavelet correlation to measure multi-dimensional correlation in 
time and frequency space. Since the proposition by Ranta (2010), this measure has been 
quite useful in several economics studies (Dajcman et al. 2012; Benhmad 2013) due to its 
advantage in analysing distinct time intervals. We follow the work of Benhmad (2013), 
Dajcman et al. (2012) and Ranta (2010) by computing pairwise rolling window wavelet 
correlation (with a window of 250 points per year), by rolling forward one data point and 
centred around a time. Therefore, we restrict the effective number of wavelets to J = 5, 
but analyse the first four scales.3 We also visualise decomposed correlation in a new way 
following Polanco-Martínez et al. (2018).

2.3 � Non‑linear causal relationship

The application of linear causality is effective in investigating the presence of causal rela-
tionship between different time series; however, it does not capture the presence of non-
linearity in the model. Therefore, for non-linear time series like behaviour of different 
financial and commodities’ markets having presence of dynamic structure, i.e. regime 
shifts, structural breaks, etc., the application of non-linear Granger causality is more 
appropriate. Baek and Brock (1992) proposed a non-parametric technique to detect the 
presence of non-linear causal behaviour, an improved version of which was later pro-
vided by Hiemstra and Jones (1994). Following the work of Hiemstra and Jones (1994) 
which tends to over-reject the null hypothesis after being tested, Diks and Panchenko 
(2006) proposed a non-linear non-parametric Granger causality test to avoid this over 
rejection issue. We employ the test proposed by Diks and Panchenko (2006) to estimate 
the non-linear behaviour between global alternative energy indices, explained below.

The null of Granger causality between series Xt and Yt is based on hypothesis that Xt 
contains no information about Yt+1 (Diks and Panchenko 2006; Bekiros and Diks 2008). 
We consider Xlx

t =
(

Xt−1X+1,...,Xt

)

 and Y ly
t =

(

Yt−1Y+1,...,Yt

)

 as delay vectors, where lx , 
ly ≥ 1 represent delays for Xt and Yt , respectively. We define null hypothesis as

Under the null hypothesis, we assume Zt = Yt+1 by dropping time indices in Eq. (3) and 
that the conditional distribution of Z given (X,Y) = (x,y) is similar to Z given Y = y (Diks 
and Panchenko 2006; Bekiros and Diks 2008). We express the null hypothesis of Eq. (3) 
as joint distribution function that the joint probability density function fX,Y,Z (x, y, z) and 
associated marginals satisfy the following relationship.

(3)Ho : Yt+1

∣

∣

∣
(Xlx

t ;Y ly
t ) ∼ Yt+1

∣

∣

∣
Y
ly
t .

3  This is because after the application MODWT to a sub-window containing 250 data points with avoiding the bound-
ary wavelet coefficients, number of data points become much lesser than 250 for the 5th scale. Therefore, we make us of 
calculations as N − W, where N = 1043 and w = 250 which makes N − w = 793 windows, and thus the correlation coef-
ficient.
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Therefore, we see clear evidence that X and Y have conditional independence of Y = y 
for each fixed y (Diks and Panchenko 2006; Bekiros and Diks 2008). According to Diks 
and Panchenko (2006), the null hypothesis of Eq. (3) can be expressed as

In the above equation, E represents expectation operator whereas estimator for q 
according to Diks and Panchenko (2006) is as follows.

In the above expression, IWij  represents I(|
∣

∣WiWj|
∣

∣ < ε), where I represents character-
istics function or indicator. Wi and Wj represent elements of a dw-variate random vec-
tor W. ε is the bandwidth whereas n represents sample size (Diks and Panchenko 2006; 
Bekiros and Diks 2008). Considering the local density estimator of dw-variate random 
vector W can be expressed as f̂WWi = 2 ∈−dW (n− 1)−1

∑

j,j �=1 I
W
ij  , we define T statis-

tics according to Diks and Panchenko (2006) as

For εn = C−β
n , with β ∈ (1/4, 1/3) and C > 0, and for the lag − 1 lx = ly = −1 , the T sta-

tistics has asymptotic normal distribution and satisfies the following condition.

where d→ represents convergence in distribution function. Sn denotes asymptotic vari-
ance estimator, Tn (Diks and Panchenko 2006; Bekiros and Diks 2008).

3 � Data, variables and preliminary analysis
Data for our variables are based on the global alternate energy indices from different devel-
oped and emerging equity markets. These alternate energy equity markets are sampled 
as World, Developed, Emerging, EU, BRIC and G7. The alternative energy indices repre-
sent companies deriving most of their revenues from the services and products in alter-
native energy. We have segregated these alternative energy indices representing different 
geographic locations, i.e. World, Developed, Emerging, EU, BRIC and G7 region. World 
alternative energy market index includes broad markets from the developed and emerg-
ing countries with large, mid and small cap equities. These free float-adjusted market 
capitalised weighted indices are composed with respect to the clean technology environ-
mental themes. These equities derive most of their revenues from the services and prod-
ucts of alternative energy, green building, energy efficiency, sustainable water, pollution 
prevention, etc. Developed alternative energy market index comprises Australia, Austria, 
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Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy, 
Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzer-
land, the UK and the US. Emerging alternative energy market index consists of Brazil, 
Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, 
Malaysia, Mexico, Pakistan, Peru, Philippines, Poland, Russia, Qatar, South Africa, Taiwan, 
Thailand, Turkey and United Arab Emirates. The EU alternative energy index captures 
mid- and large-cap segments of 15 developed markets in Europe. The BRIC and G7 alter-
native energy market comprises stocks in BRISC and G7 countries with a focus on prod-
ucts and services deriving revenues from various alternative energy sources.

Timeline for our sampled indices span over 12-year period and ranges from January 
2006 to December 2017, based on daily frequency. Data are extracted from Thomson 
Reuters DataStream. Table 1 presents descriptive statistics for alternate energy returns 
over three subsample periods, i.e. full sample, pre- and post-crises periods. We see that 
for all subsamples, alternative energy returns yield negative minimum values; however, 
BRIC alternative energy market exhibits maximum return values in all sampling periods 
suggesting more potential in terms of speculative positive returns. However, by look-
ing at the mean values, EU alternative energy market presents itself as the most viable 

Table 1  Descriptive statistics

*Significance level at 5% or better

Statistic World Developed Emerging EU BRIC G7

Minimum (full sample) − 0.2232 − 0.2477 − 0.2322 − 0.1810 − 0.5009 − 0.1896

Minimum (pre-GFC) − 0.1119 − 0.1396 − 0.1034 − 0.1251 − 0.1428 − 0.1509

Minimum (post-GFC) − 0.2232 − 0.2477 − 0.0901 − 0.1326 − 0.2035 − 0.1106

Maximum (full sample) 0.1644 0.2009 0.1786 0.1728 0.2272 0.2175

Maximum (pre-GFC) 0.0867 0.1128 0.1297 0.1190 0.1738 0.1481

Maximum (post-GFC) 0.0776 0.1134 0.1013 0.1026 0.2272 0.2175

Mean (full sample) − 0.0003 − 0.0003 − 0.0005 0.0001 − 0.0006 − 0.0003

Mean (pre-GFC) 0.0018 0.0021 0.0007 0.0024 0.0008 0.0019

Mean (post-GFC) − 0.0004 − 0.0005 − 0.0003 0.0001 − 0.0001 − 0.0005

Std. dev. (full sample) 0.0211 0.0240 0.0242 0.0252 0.0307 0.0268

Std. dev. (pre-GFC) 0.0199 0.0234 0.0274 0.0246 0.0351 0.0303

Std. dev. (post-GFC) 0.0170 0.0199 0.0180 0.0216 0.0228 0.0219

Skewness (full sample) − 0.7407 − 0.5937 − 0.4573 − 0.3791 − 1.4993 − 0.0688

Skewness (pre-GFC) − 0.7101 − 0.6543 − 0.0240 − 0.4796 − 0.0036 − 0.3734

Skewness (post-GFC) − 1.1213 − 0.9650 0.0757 − 0.2805 0.4586 0.3307

Kurtosis (full sample) 12.4934 11.0776 8.3973 6.5982 29.8108 7.6456

Kurtosis (pre-GFC) 4.0811 4.8884 2.1874 4.5754 2.7507 4.3797

Kurtosis (post-GFC) 14.5722 12.6111 2.2453 2.6250 11.9866 6.4478

JB stats (full sample) 20,092* 15,585* 8571.5* 5383.3* 10,755* 7131.1*

JB stats (pre-GFC) 489.37* 671.16* 125.46* 572.78* 517.35* 198.31*

JB stats (post-GFC) 20678* 15483* 481.75* 685.42* 13747* 3996.3*

ADF (full sample) − 48.614* − 49.985* − 51.072* − 52.135* − 52.980* − 51.699*

PP (full sample) − 48.588* − 49.854* − 51.137* − 52.081* − 53.100* − 51.615*

KPSS (full sample) 0.1864 0.2231 0.0500 0.2191 0.0681 0.1829

Q (20) (full sample) 97.433* 77.053* 59.684* 54.933* 68.773* 46.746*

Q2 (20) (full sample) 2937.1* 2055.0* 3822.1* 3310.6* 600.43* 1879.5*

ARCH (20) (full sample) 39.551* 30.257* 58.691* 47.783* 18.313* 32.238*
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option for investment by yielding a daily return of 0.01%, 0.24% and 0.01% in full sample, 
pre-crises and post-crises periods. It is also interesting to note that all alternative energy 
markets (except EU) yield positive returns in pre-crises whereas negative returns in post-
crises period. Similarly, full sample highlights negative daily return values on average for 
all alternative energy indices. BRIC alternative energy market exhibits maximum risk in 
terms of standard deviation of returns across all sampling periods. Jarque–Bera statis-
tic is applied to test the normality of all return series and our results suggest that the 
data are not normal. Most of the alternative energy markets highlight negatively skewed 
returns with fat tails and lepto-kurtic distribution also confirming the results of our nor-
mality measures that data are not normally distributed across all subsample periods. We 
employ ADF and PP tests to check the presence of unit root and KPSS to investigate sta-
tionarity properties of returns. Our results do not suggest the presence of unit root (ADF 
and PP tests) thereby confirming the stationarity of our return series (KPSS test). We 
apply Ljung box test statistics to investigate the presence of serial correlation in residuals 
and squared residuals of returns series. Results of Q(20) and Q2(20) statistics suggest the 
presence of serial correlation up to 20th lag. Similarly, we apply ARCH LM test to check 
conditional heteroscedasticity in returns and report its presence in all series.
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Fig. 1  Return dynamics
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Return pattern of all sampled series is plotted in Fig.  1. Though all return series 
exhibit volatility across the sample period, it seems more evident during the global 
financial crisis of 2008–2009. These results suggest that the alternative energy assets 
exhibit sensitive behaviour to global financial turbulences like traditional asset class 
and are not immune to it. For all series, variation in daily returns remains consistent 
throughout the sample period; however, it becomes less prominent compared to the 
global financial crisis of 2008–2009.

Table  2 highlights unconditional correlation statistics between our alternative 
energy returns across two samples, i.e. pre-crises and post-crises period. We wit-
ness that before crises period, developed markets like World, Developed, G7 and EU 
exhibit high daily return correlation compared to Emerging and BRIC alternative 
energy market, suggesting more integration and less diversification benefits. Results 
almost remain similar for post-crises period between most of the markets with an 
increasing correlation pattern of Emerging and BRIC alternative energy returns with 
the Developed, G7 and EU markets.

Table 2  Unconditional correlation

*Significance level at 5% or better

Variables World Developed Emerging EU BRIC G7

Pre-GFC

 World 1*

 Developed 0.9308 1*

 Emerging 0.2553 0.1056 1*

 EU 0.7732 0.8016 0.0931 1*

 BRIC 0.1807 0.0852 0.6013 0.0720 1*

 G7 0.6473 0.6956 0.0600 0.5258 0.0478 1*

Post-GFC

 World 1* 0.9649 0.4558 0.8160 0.3747 0.7185

 Developed 1* 0.2704 0.8394 0.2646 0.7540

 Emerging 1* 0.2301 0.6846 0.2082

 EU 1* 0.2231 0.5850

 BRIC 1* 0.1907

 G7 1*

Fig. 2  Annualised risk–return relationship
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We present annualised risk–return relationship between all the alternative energy 
indices over the sample period in Fig. 2. All alternative energy markets exhibit high-risk 
characteristics on the horizontal axis with BRIC market leading the way. These risks are 
plotted against returns on vertical axis where EU alternative energy market amongst 
others dominates in terms of annualised return values, thereby presenting itself as a 
comparatively feasible option for investment.

4 � Analysis and discussion
4.1 � Rolling window wavelet correlation

In this section, we present results of rolling window wavelet correlation (RWWC) for 
each pair of sampled alternative energy return. We further add to our analysis by add-
ing a break in the timeline representing four major economically and financially tur-
bulent periods. These periods are termed as Subprime Crisis (SPC), Lehman Brother 
Crisis (LBC), European Sovereign Debt Crisis (SDC) and Greece Sovereign Crisis (GR). 
Therefore, the three subsample periods, i.e. full sample period, pre-crises period and 
the post-crises period, are selected due to their relevance to our alternate energy mar-
kets sampled from different regions. These crises periods affected all these regions in 
one way or the other and therefore present important implications. Figure 3a–e presents 
rolling window wavelet correlation results based on different decomposition levels from 
D1 to D4, corresponding towards a shift of investment horizon from daily to monthly 
period. The power of bilateral correlation between each pair of alternative energy mar-
ket is highlighted in the right corner of each correlation bar as a power spectrum. This 
power spectrum ranges from a low correlation value (bottom of the scale) to high corre-
lation value (top of the scale) for each correlation bar. The strength of correlation corre-
sponding to respective rolling window is depicted through different colouring schemes, 
i.e. green, yellow and red being the most prominent highlighting low, medium and high 
bivariate correlation values, respectively.

We start our analysis by comparing the World alternative energy index with other 
alternative energy markets in a pair (Fig. 3a). Result of World–Developed and World–
EU pairs suggests high correlation pattern at all decomposed levels across the sample 
period. However, for World–EU pair, correlation between the two markets falls in the 
first half of 2014 for short- as well as long-run investment horizons. World–G7 pair pre-
sents somewhat different story as we see a substantial shift from high to low correlation 
pattern across all investment horizons after the crises periods suggesting an oppor-
tunity for investment by including these two alternative energy assets in a portfolio. 
World–Emerging and World–BRIC pairs present a different story altogether. We witness 
low correlation values across the entire sampling period and at all decomposed levels 
between these markets. Such low correlation level remains steady even during differ-
ent financial crises periods suggesting a suitable mix in terms of diversification between 
these pairs. These alternative energy markets, therefore, highlight opportunities for 
short- and long-run investors and seem to become immune against the financially and 
economically turbulent periods.

Results of rolling window multiple wavelets between Developed and rest of the alter-
native energy markets are depicted in Fig.  3b. Developed alternative energy market 
behaves similar to the World alternative energy market discussed above as it exhibits 
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Fig. 3  a Rolling window wavelet correlation—world market. b Rolling window wavelet correlation—
developed Market. c Rolling window wavelet correlation—emerging market. d Rolling window wavelet 
correlation—EU market. e Rolling window wavelet correlation—BRIC market
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high correlation pattern with both its developed alternative energy market counterparts, 
i.e. G7 and the EU. Developed–EU market pair exhibits high correlation throughout 
the sample period across all investment horizons except in 2014, where we see moder-
ate correlation at all decomposed levels suggesting potential avenues of diversification 
for investors. However, return correlation seems to escalate later again until recently. 

Fig. 3  continued
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Fig. 3  continued



Page 15 of 24Rehman ﻿Economic Structures            (2020) 9:16 	

Developed–G7 alternative energy indices pair experiences high return co-movements 
until first half of 2011 after which the magnitude of such co-movements declines, imply-
ing potential of investment in this market pair. We witness even low correlation pattern 
at daily to weekly investment horizons from 2015 to 2017 compared to bi-monthly and 
monthly investment periods, suggesting more potential for short-term investments. 
We report different findings for Developed–Emerging and Developed–BRIC pair high-
lighting low daily return correlation. Such low correlation across all decomposed levels 
entails implications at all investment horizons i.e. from daily to monthly periods. We 
neither find traces of contagion during the financial crises and economically turbulent 
period nor report their after effects on return patterns. Therefore, potential diversifica-
tion benefits can be implied by investing amongst Developed, Emerging and BRIC alter-
native energy markets.

Figure  3c presents wavelet correlation results of alternative energy Emerging with 
other markets. For Emerging–BRIC pair, we witness high correlation in pre- and dur-
ing the Subprime and Lehman brother crises periods. However, after which the correla-
tion reduces to a moderate level of 0.5 till the beginning of 2013. After 2013, however, 
the correlation again escalates and afterwards maintains a steady high level implying 
reduced diversification benefits between these two asset classes. Emerging–EU and 
Emerging–G7 alternative energy market pairs highlight low return correlation through-
out the sample period, even during all crises periods with traces of negative correlation 
as well. These traces of negative correlation are more pronounced in higher invest-
ment horizons, i.e. D4 corresponding to monthly investment period. Amongst all other 
alternative energy market pairs, these two pairs, i.e. Emerging–EU and Emerging–G7, 
highlight maximum traces of negative correlation and therefore more diversification 
opportunities.

Figure  3d presents results of wavelet correlation for EU–BRIC and EU–G7 alterna-
tive energy market pair. For EU–BRIC combination, we witness low level of correla-
tion pattern across entire period and at all decomposition levels representing short- to 
long-run investment horizons. Even during all crises periods, return between these mar-
kets exhibit least co-movement highlighting immunity to contagion, thereby implying 
potential for diversification benefits between these assets. Unlike short-run investment 
horizons, we find traces of negative correlation at monthly level (i.e. D4) suggesting that 
investments at monthly levels are more feasible than the short-run, i.e. daily or intra-
week investments. However, EU–G7 pair exhibits high correlation patters across entire 
sample period. This high correlation is more evident during the crises period highlight-
ing its sensitivity to contagion which afterwards reduces to some extent. However, these 
two assets do not present an optimal investment avenue at any level of investment hori-
zon, i.e. either short- or long-run.

Figure  3e present ours last pair-wise combination of alternative energy markets, i.e. 
BRIC–G7. This market combination presents optimal investment opportunities since 
the correlation appears at its low level with few traces of negative correlation at monthly 
investment horizons. These two markets highlight even no sensitivity to the global 
financial crises and economic turbulent periods, thereby suggesting opportunities for 
investment between these two markets even during economic and financially uncertain 
periods.
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4.2 � Non‑linear causality

We present results of non-linear granger causality test between sampled alternative 
energy markets in Fig. 4. These results are based on bivariate framework between alter-
native energy markets and are separated for each decomposed level, i.e. from D1 to D4 
corresponding to 1, 2, 4 and 8 days, respectively. These decomposed levels are associated 
with 2–4 days’ (intra-week), 4–8 days’ (weekly), 8–16 days’ (fortnightly) and 16–32 days’ 
(monthly) scale. We further divide our analysis into three subsample divisions for pre-, 
during and post- crises analysis. This crises timeline contains Subprime Crisis (SPC), 
Lehman Brother Crisis (LBC), European Sovereign Debt Crisis (SDC) and Greece Sover-
eign Crisis (GR).

Results of non-linear granger causality test for pre-crises period are presented in panel 
a of Fig.  4. For intra-week period, Emerging alternative energy markets highlight no 
causal effect in any direction with the Developed, G7 and EU alternative energy mar-
kets. Similarly, BRIC alternative energy returns remain insensitive to World, Developed 
and the EU alternative energy markets. The results remain similar for weekly investment 
horizon except few cases where emerging alternative energy market returns become 
insensitive to World and BRIC whereas become responsive to Developed and EU mar-
kets’ returns. BRIC alternative energy market highlights no correlation with World, 
Developed and the EU alternative energy markets across all investment horizons except 
monthly period where it exhibits sensitivity to both EU and Developed alternative 
energy market returns. Co-movements between all alternative energy markets remain 
responsive to each other in fortnightly and monthly investment horizons.

Fig. 4  Non-linear bidirectional granger causality test
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During the crises period, return co-movements of World index with Emerging and 
BRIC markets and of BRIC market with the Developed markets remain insignificant 
across intra-week and weekly horizons. For rest of the market pairs, we witness more 
cases of bidirectional causality on intra-week basis except emerging market which 
remains recipient of change from other markets, i.e. EU and BRIC in some cases. For 
returns’ decomposition on a weekly basis, results are quite similar except Emerging and 
BRIC index, role of which changes from bidirectional causality to recipient of change 
from other markets. In case of fortnightly causality under periods of Subprime Crisis, 
Lehman Brother Crisis, European Sovereign Debt Crisis and Greece Sovereign Crisis, 
Emerging markets remain dormant in terms of any causal behaviour with the world, 
Developed, EU and G7 alternative energy markets. We witness only couple of unidirec-
tional causal relationships running from BRIC towards World and Developed alternative 
energy markets. All the developed alternative energy markets, i.e. World, EU, Devel-
oped and G7, exhibit strong bidirectional causality implying least diversification benefits 
for investments during the financially distressed periods. However, during such crises 
period, these developed alternative energy indices remain uncorrelated with Emerging 
and BRIC markets.

Finally, during post-crises period our estimates highlight unidirectional causality of 
BRIC with the World and G7 alternative energy returns. Besides these two cases, we 
witness cases of bidirectional causal behaviour with no evidence of lack of causal rela-
tionship between any pair. Results for post-crises period highlight that for all investment 
periods, i.e. intra-week, daily, fortnightly and monthly, there exists bidirectional causal 
relationship between each pair. These results suggest that after the crises period, our 
sampled alternative energy markets exhibit high level of integration, thus reducing any 
potential diversification benefits.

5 � Conclusion
The increasing importance of alternative energy in the recent era has also demon-
strated its popularity amongst the investment community. The energy companies and 
sectors are gaining acceptance in terms of investments along with their role towards 
socially responsible initiatives. These energy indices not only provide optimal returns 
on an individual basis but also offer avenues of diversification amongst different secu-
rities. Therefore, this study investigates the presence of diversification opportuni-
ties between six major alternative energy markets, i.e. World, Developed, Emerging, 
EU, BRIC and G7. To highlight the presence of integration between these alternative 
energy markets, we use the extensions in traditional wavelet techniques to measure 
investment opportunities not only between different investment horizons (i.e. short- 
and long-run) but pre-, during, and post-crises economic and financial periods. To 
proceed, we decompose all alternative energy market returns into different decom-
posed levels using MODWT model. These decomposed series are then used in esti-
mating bivariate rolling window wavelet correlation proposed by Polanco-Martínez 
et al. (2018). Our estimations are based on subsampling periods comprising Subprime 
Crisis, Lehman Brother Crisis, European Sovereign Debt Crisis and Greece Sovereign 
Crisis periods. Our results highlight high level of integration during pre-crises and 
crises periods between Developed, EU, World and G7 alternative energy markets, 
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however, with slight variations between different investments horizons. More diver-
sification opportunities exist between the combinations of BRIC and Emerging 
alternative energy markets with Developed, EU, World and G7, attributable to low 
evidence of non-linear causality. However, post-crises period exhibits high level of 
integration amongst all markets due to the presence of bivariate causality between 
each alternative energy market pair. Our results of rolling window wavelet correlation 
are supported by the application of non-linear granger causality statistics thus adding 
robustness to our findings.

Though our study is based on alternative energy markets from different regions, the 
results are not totally different from the studies employing conventional developed and 
emerging stock markets. For example, there are many studies that report diversifica-
tion benefits based on low integration level between emerging and developed markets 
(see Narayan and Rehman 2017, 2019; Shahzad et  al. 2018; Mensi et  al. 2017; Gupta 
and Guidi 2012). Therefore, despite of sampling various alternative energy markets, our 
study remains silent on the diversification benefits associated with traditional developed 
and emerging stock markets and hence, presents a future avenue of research.

Our results have implications for investors and policy makers. The increasing role of 
alternative energy sector has recently attracted the attention of international investment 
community. However, their role becomes more important when combined in a portfo-
lio with other equity markets. In this way, these assets can act more like a hedger than 
the speculative assets. Similarly, investment in energy sector has some implications in 
terms of socially responsible investments. Our study therefore carries implications for 
investments in alternative energy market. We highlight that BRIC and Emerging alterna-
tive energy markets offer maximum diversification opportunities along with Developed, 
World, G7 and EU markets. Similarly, investing amongst the Emerging and G7 markets 
can result in optimal returns attributable to low returns’ correlation. Such low corre-
lation remains persistent even during different financial and economic crisis periods. 
Similarly, investors should restrain making investments amongst developed alternative 
energy markets since these markets are highly integrated with each other. Therefore, in 
terms of investments, Emerging and BRIC alternative energy markets when combined 
with World, Developed, EU and G7 yield optimal return opportunities, thus providing 
hedge against extreme downwards movements in any other market. However, Emerg-
ing and BRIC alternative energy markets together in a portfolio yield high correlation 
values, therefore do not offer optimal returns. Though Emerging and BRIC together are 
not favourable in terms of investment, they provide good opportunities when mixed 
with other alternative energy markets like World, Developed, EU and G7. Policy makers 
can also benefit from the results of our study since high returns from alternative energy 
sector can result in increased investments. As a result of investor’s confidence in this 
asset class, this sector can increase in its growth by further inducing socially respon-
sible initiatives due to which more investors can be lured for investment purposes. 
Finally, the inclusion of these alternative energy assets in a portfolio can provide hedge 
against financial and economic turbulence, thereby having implications for policy mak-
ers to increase the role of such alternative energy sources not only for the betterment 
of energy-related issues but also towards providing cover to the financial community 
against economic and financial turmoil.
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Apeendix
See Tables 3, 4, 5, and 6.   

Table 3  Non-linear bidirectional Granger causality test

Pre-crisis Crisis Post-crisis

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

World–developed → → ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
World–emerging ← ↔ ↔ → ↔ ↔ ↔ ↔ ↔
World–EU ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
World–BRIC ← → ↔ ↔ ↔ ↔
World–G7 ↔ → ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
Developed–emerging ↔ → ↔ ↔ → ↔ ↔ ↔ ↔ ↔
Developed–EU ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
Developed–BRIC ↔ ← ↔ ↔ ↔ ↔ ↔
Developed–G7 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
Emerging–EU ← ↔ ↔ ← ↔ ↔ ↔ ↔ ↔
Emerging–BRIC ↔ ↔ ↔ ← ↔ ↔ ↔ ↔ ↔ ↔
Emerging–G7 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
EU–BRIC ↔ → ↔ ↔ ↔ ↔ ↔
EU–G7 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
BRIC–G7 ↔ → ← ↔ ← → → ↔ ↔ ↔ ↔
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Table 4  Non-linear Granger causality with decompositions—pre-crisis

Pre-crisis period Non-linear Granger causality with decomposition Non-linear 
Granger causality 
without decompositionD1 D2 D3 D4

World–developed 1.534 (0.0625) 1.390 (0.0823) 6.465 (0.0000) 6.219 (0.0000) 1.045 (0.1481)

Developed–world 1.133 (0.1286) 1.261 (0.1037) 6.187 (0.0000) 7.166 (0.0000) -0.188 (0.5746)

World–emerging 1.013 (0.1557) 0.968 (0.1666) 2.389 (0.0084) 5.021 (0.0000) 1.785 (0.0371)

Emerging–world 1.354 (0.0879) 0.531 (0.2978) 1.923 (0.0272) 4.529 (0.0000) 1.545 (0.0615)

World–EU 1.984 (0.0236) 1.568 (0.0584) 5.786 (0.0000) 6.611 (0.0000) 1.378 (0.0841)

EU–world 2.500 (0.0062) 1.949 (0.0256) 5.611 (0.0000) 6.736 (0.0000) 0.863 (0.1941)

World–BRIC 0.140 (0.4445) 0.481 (0.6847) 1.795 (0.0363) 3.997 (0.0000) 1.189 (0.1173)

BRIC–world 1.225 (0.1103) 1.002 (0.1581) 1.509 (0.0657) 4.075 (0.0000) 0.611 (0.2706)

World–G7 2.005 (0.0225) 1.618 (0.0529) 5.558 (0.0000) 6.339 (0.0000) 1.424 (0.0773)

G7–world 2.089 (0.0184) 0.482 (0.3149) 5.005 (0.0000) 6.491 (0.0000) 1.597 (0.0552)

Developed–emerging 0.834 (0.2021) 1.535 (0.0623) 1.690 (0.0455) 3.675 (0.0001) 0.677 (0.2493)

Emerging–developed 0.370 (0.6442) 1.373 (0.0850) 0.433 (0.3324) 3.492 (0.0002) 0.851 (0.1974)

Developed–EU 2.509 (0.0061) 1.371 (0.0852) 6.063 (0.0000) 6.296 (0.0000) 0.747 (0.2276)

EU–developed 3.768 (0.0001) 2.253 (0.0121) 7.326 (0.0000) 6.365 (0.0000) − 0.361 (0.6410)

Developed–BRIC 0.595 (0.2783) 1.001 (0.1584) 0.879 (0.1896) 2.813 (0.0025) 0.329 (0.3711)

BRIC–developed 0.282 (0.3889) 1.190 (0.1170) 0.125 (0.4503) 3.270 (0.0005) 1.589 (0.0560)

Developed–G7 2.658 (0.0093) 1.357 (0.0874) 5.431 (0.0000) 6.099 (0.0000) 1.201 (0.1148)

G7–developed 2.459 (0.0070) 2.085 (0.0186) 5.978 (0.0000) 6.377 (0.0000) 0.624 (0.2661)

Emerging–EU 0.705 (0.2404) 1.155 (0.1240) 1.316 (0.0941) 3.386 (0.0004) 0.457 (0.0324)

EU–emerging 1.029 (0.1516) 1.363 (0.0865) 1.527 (0.0634) 3.945 (0.0004) 1.301 (0.0967)

Emerging–BRIC 2.248 (0.0123) − 0.277 (0.6092) 7.103 (0.0000) 8.172 (0.0000) 0.041 (0.4836)

BRIC–emerging 2.548 (0.0054) 0.629 (0.2648) 6.628 (0.0000) 8.368 (0.0000) 0.216 (0.4146)

Emerging–G7 0.489 (0.3125) 1.317 (0.0940) 1.424 (0.0772) 2.291 (0.0110) 1.616 (0.0530)

G7–emerging 1.170 (0.1211) 1.283 (0.0997) 1.798 (0.0361) 3.825 (0.0001) 1.010 (0.1563)

EU–BRIC 0.783 (0.2168) − 0.263 (0.6037) 0.671 (0.2512) 3.205 (0.0007) 1.077 (0.1408)

BRIC–EU 1.251 (0.1054) 0.996 (0.1595) 1.156 (0.1239) 3.413 (0.0003) 0.906 (0.1826)

EU–G7 2.510 (0.0064) 0.930 (0.1763) 5.964 (0.0000) 6.267 (0.0000) 0.538 (0.2954)

G7–EU 2.674 (0.0038) 0.564 (0.2863) 5.740 (0.0000) 6.340 (0.0000) 0.627 (0.2653)

BRIC–G7 1.298 (0.0971) 1.711 (0.0436) 0.760 (0.2237) 2.503 (0.0062) 1.514 (0.0650)

G7–BRIC 1.428 (0.0766) 1.096 (0.1366) 1.564 (0.0590) 2.805 (0.0025) 1.084 (0.1392)
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Table 5  Non-linear Granger causality with decompositions—crisis period

Crisis period Non-linear Granger causality with decomposition Non-linear 
Granger causality 
without decompositionD1 D2 D3 D4

World–developed 1.896 (0.0290) 2.308 (0.0105) 4.711 (0.0000) 3.928 (0.0004) 0.686 (0.2464)

Developed–world 1.238 (0.1078) 1.719 (0.0428) 3.874 (0.0006) 3.875 (0.0006) 0.838 (0.2011)

World–emerging 1.502 (0.0666) 1.910 (0.0281) 1.083 (0.1395) 2.973 (0.0015) − 0.856 (0.8039)

Emerging–world 0.541 (0.2942) − 0.190 (0.5752) 0.997 (0.1595) 2.704 (0.0034) 0.967 (0.1668)

World–EU 2.819 (0.0024) 2.387 (0.0085) 3.984 (0.0000) 3.413 (0.0003) 1.227 (0.1099)

EU–world 2.935 (0.0017) 2.343 (0.0096) 3.858 (0.0001) 3.969 (0.0000) 1.776 (0.0378)

World–BRIC 0.832 (0.2027) 0.045 (0.4819) 1.178 (0.1195) 1.673 (0.0472) 1.110 (0.1336)

BRIC–world 0.687 (0.7539) 0.489 (0.3123) 1.860 (0.0314) 2.304 (0.0106) 0.694 (0.2438)

World–G7 2.593 (0.0048) 2.449 (0.0072) 3.906 (0.0001) 4.277 (0.0000) 1.493 (0.0678)

G7–world 2.619 (0.0044) 2.068 (0.0193) 4.504 (0.0000) 4.003 (0.0000) 1.154 (0.1242)

Developed–emerging 1.954 (0.0254) 1.736 (0.0413) 0.593 (0.2765) 2.877 (0.0020) − 1.120 (0.8687)

Emerging–developed 1.351 (0.0883) 0.443 (0.3290) 0.375 (0.3537) 2.738 (0.0027) 0.611 (0.2706)

Developed–EU 2.688 (0.0036) 2.413 (0.0079) 4.631 (0.0000) 3.682 (0.0001) 1.306 (0.0957)

EU–developed 3.151 (0.0008) 2.078 (0.0188) 4.326 (0.0000) 4.144 (0.0002) 1.280 (0.1003)

Developed–BRIC 0.755 (0.2253) 0.221 (0.4124) 0.421 (0.3367) 1.618 (0.0528) 1.326 (0.0924)

BRIC–developed − 0.462 (0.6780) 0.613 (0.2700) 1.302 (0.0964) 2.639 (0.0042) − 0.512 (0.6957)

Developed–G7 2.239 (0.0126) 1.986 (0.0235) 3.729 (0.0010) 3.940 (0.0000) 1.253 (0.1051)

G7–developed 2.360 (0.0092) 2.181 (0.0146) 4.588 (0.0000) 3.870 (0.0001) 0.819 (0.2064)

Emerging–EU 0.876 (0.1905) 0.127 (0.4493) 0.699 (0.2424) 2.376 (0.0088) − 0.120 (0.5476)

EU–emerging 2.074 (0.0190) 0.256 (0.3988) 0.143 (0.4433) 2.636 (0.0042) − 0.097 (0.5386)

Emerging–BRIC 1.081 (0.1398) 0.565 (0.2860) 2.733 (0.0031) 3.297 (0.0005) 0.396 (0.346)

BRIC–emerging 1.519 (0.0644) 0.785 (0.2161) 2.489 (0.0064) 3.186 (0.0007) − 0.285 (0.6121)

Emerging–G7 1.752 (0.0399) 1.529 (0.0631) 0.729 (0.2330) 2.607 (0.0046) 0.967 (0.1669)

G7–emerging 1.322 (0.0931) 1.878 (0.0302) 0.725 (0.2344) 2.600 (0.0047) − 0.651 (0.7426)

EU–BRIC 1.777 (0.0378) − 0.037 (0.5146) 0.255 (0.3992) 1.913 (0.0279) 0.749 (0.2268)

BRIC–EU 0.582 (0.2805) 0.028 (0.4887) 1.246 (0.1064) 2.611 (0.0045) − 0.726 (0.7661)

EU–G7 2.560 (0.0052) 2.533 (0.0057) 3.133 (0.0009) 4.174 (0.0000) 0.780 (0.2176)

G7–EU 2.122 (0.0169) 2.431 (0.0075) 3.711 (0.0001) 3.632 (0.0001) 1.013 (0.1555)

BRIC–G7 0.945 (0.1724) 1.359 (0.0871) 1.272 (0.1017) 2.668 (0.0038) 0.846 (0.1988)

G7–BRIC 1.868 (0.0309) 1.178 (0.1193) 0.473 (0.3181) 0.991 (0.1607) 0.409 (0.3413)
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