
The Samuelson macroeconomic model 
as a singular linear matrix difference equation
Fernando Ortega and Maria Filomena Barros*

1  Introduction
Many authors have studied generalized discrete, see (Apostolopoulos and Ortega 2019; 
Dassios 2015a; Dassios and Kalogeropoulos 2013; Ogata 1987; Ortega and Apostolopou-
los 2018), and continuous time systems, see (Dassios et al. 2019, 2020; Lewis 1986, 1987, 
1992; Liu et al. 2019; Milano and Dassios 2016, 2017), and their applications especially in 
cases where the memory effect is needed including generalized discrete, see (Dassios and 
Baleanu 2015; Dassios and Kalogeropoulos 2014; Dassios and Szajowski 2016), and con-
tinuous time systems with delays, see (Liu et al. 2017, 2019, 2020; Tzounas et al. 2020). 
Many of these results have already been extended to systems of differential, see (Dassios 
and Baleanu (2018a, b; Klamka 2010; Klamka and Wyrwał 2008; Podlubny 1999) and dif-
ference equations with fractional operators, see (Dassios 2015c, 2018b).

Keynesian macroeconomics inspired the seminal work of (Samuelson 1939), who actu-
ally introduced the business cycle theory. Although primitive and using only the demand 
point of view, the Samuelson’s prospect still provides an excellent insight into the prob-
lem and justification of business cycles appearing in national economies. In the past 
decades, many more sophisticated models have been proposed by other researchers, see 
(Barros and Ortega 2019; Dassios and Devine 2016; Dassios and Zimbidis 2014; Das-
sios et al. 2014; Dorf 1983; Kuo 1996; Puu et al. 2004; Rosser 2000). All these models use 
superior and more delicate mechanisms involving monetary aspects, inventory issues, 
business expectation, borrowing constraints, welfare gains and multi-country consump-
tion correlations.

Some of the previous articles also contribute to the discussion for the inadequacies 
of Samuelson’s model. The basic shortcoming of the original model is the incapability 
to produce a stable path for the national income when realistic values for the different 
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parameters (multiplier and accelerator parameters) are entered into the system of 
equations. Of course, this statement contradicts with the empirical evidence which 
supports temporary or long-lasting business cycles.

In this article, we propose an alternative view of the model by reforming it into a 
singular discrete time system.

The paper theory of difference equations is organized as follows. Section 2 provides 
a short review for the organization of the original model and in Sect. 3, we introduce 
the proposed reformulation into a system of difference equations. Section 4 investi-
gates the solutions of the proposed system.

2 � The original model
The original version of Samuelson’s multiplier–accelerator original model is based on 
the following assumptions:

Assumption 2.1  National income Tk in year k equals to the summation of three ele-
ments: consumption, Ck , private investment, Ik , and governmental expenditure Gk

Assumption 2.2  Consumption Ck in year k depends on past income (only on last year’s 
value) and on marginal tendency to consume, modeled with a, the multiplier parameter, 
where 0 < a < 1,

Assumption 2.3  Private investment Ik in year k depends on consumption changes and 
on the accelerator factor b, where b > 0 . Consequently, Ik depends on national income 
changes,

Assumption 2.4  Governmental expenditure Gk in year k remains constant

Hence, the national income is determined via the following second-order linear differ-
ence equation

See (Samuelson 1939) for the needed theory of difference equations that lead to the solu-
tion of the above equation.

3 � The reformulation: Singular Samuelson’s model
Let

(1)Tk = Ck + Ik + Gk .

(2)Ck = aTk−1.

(3)Ik = b(Ck − Ck−1) = ab(Tk−1 − Tk−2).

Gk = Ḡ.

Tk+2 − a(1+ b)Tk+1 + abTk = Ḡ.

Yk =





Tk

Ck

Ik



.
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Then, (1) can be written as

or, equivalently,

Equation (2) can be written as

or, equivalently,

Finally (3) can be written as

or, equivalently,

or, equivalently,

Hence the above expressions can be written in a matrix form. We proved the following 
theorem:

Theorem 3.1  The difference equation (1) can be written in the form of the following sin-
gular discrete time system:

where

Note that F is singular (detF = 0) . Throughout the paper, we will use in several parts 
matrix pencil theory to establish our results. A matrix pencil is a family of matrices 
sF − G , parametrized by a complex number s, see (Dassios and Baleanu 2013).

Definition 3.1  Given F ,G ∈ R
r×m and an arbitrary s ∈ C , the matrix pencil sF − G is 

called 

1.	 Regular when r = m and det(sF − G) �= 0;
2.	 Singular when r  = m or r = m and det(sF − G) ≡ 0.

0 = −Tk + Ck + Ik + Gk ,

[

0 0 0
]

Yk+1 =
[

−1 1 1
]

Yk + Gk .

Ck+1 = aTk

[

0 1 0
]

Yk+1 =
[

a 0 0
]

Yk .

Ik+1 = b(Ck+1 − Ck).

−bCk+1 + Ik+1 = −bCk .

[

0 −b 1
]

Yk+1 =
[

0 −b 0
]

Yk .

(4)FYk+1 = GYk + Vk , k = 2, 3, . . . ,

F =





0 0 0

0 1 0

0 − b 1



, G =





−1 1 1

a 0 0

0 − b 0



, Vk =





Gk

0

0



.
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Corollary 3.1  The system (4) has always a regular pencil ∀a, b.

Proof  The determinant det(sF − G) = s2 − a(b+ 1)s + ab �= 0 . Hence from Defini-
tion 2.1, the pencil is regular. The proof is completed.

The class of sF − G is characterized by a uniquely defined element, known as the Weier-
strass canonical form, see (Dassios 2017), specified by the complete set of invariants of 
sF − G . This is the set of elementary divisors of type (s − aj)

pj , called finite elementary divi-
sors, where aj is a finite eigenvalue of algebraic multiplicity pj ( 1 ≤ j ≤ ν ), and the set of ele-
mentary divisors of type ŝq = 1

sq , called infinite elementary divisors, where q is the algebraic 
multiplicity of the infinite eigenvalue. 

∑ν
j=1 pj = p and p+ q = m.

From the regularity of sF − G , there exist non-singular matrices P, Q ∈ R
m×m such that

Jp , Hq are appropriate matrices with Hq a nilpotent matrix with index q∗ , Jp a Jordan 
matrix and p+ q = m . With 0q,p we denote the zero matrix of q × p . The matrix Q can 
be written as

Qp ∈ R
m×p and Qq ∈ R

m×q . The matrix P can be written as

P1 ∈ R
p×r and P2 ∈ R

q×r.
The solution of system (4) is given by the following Theorem:

Theorem 3.2  (See Dassios 2012) We consider the system (4). Since its pencil is always 
regular, its solution exists and for k ≥ 0 , is given by the formula

Here, Dk =





�k−1
i=0 J k−i−1

p P1Vi

sum
q∗−1

i=0
Hi
qP2Vk+i



 and C ∈ R
p is a constant vector. The matrices Qp , Qq , 

P1 , P2 , Jp , Hq are defined by (5), (6) and (7).

4 � Results and discussion
In this section we will present our main results. We will provide the solution to the sys-
tem (4) and consequently we will derive the sequence for the national income, the con-
sumption and the private investment.

(5)

PFQ =

[

Ip 0p,q

0q,p Hq

]

,

PGQ =

[

Jp 0p,q

0q,p Iq

]

.

(6)Q =
[

Qp Qq

]

.

(7)P =

[

P1
P2

]

.

Yk = QpJ
k
p C + QDk .
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Theorem 4.1  We consider the system (4). Then in year k, national income Tk , consump-
tion Ck and private investment Ik are given by

Proof  From Corollary 3.1, the pencil sF − G is always regular. Furthermore, the pencil 
has one infinite eigenvalue and two finite:

From Theorem 3.2, the solution of (4) is given by

Since we have one infinite eigenvalue, we have

and Jp is the Jordan matrix of the two finite eigenvalues:

The matrix Qp has the two eigenvectors of the two finite eigenvalues:

while Qq is the eigenvector of the infinite eigenvalue:

Hence,

and the solution Yk takes the form:

Tk = sk+1
1

c1 + sk+1
2

c2 + a

k−1
∑

i=0

[(sk−1
1

+ sk−1
2

)]Gi,

Ck = a(sk1c1 + sk2c2)+ a2
k−1
∑

i=0

[(sk−i−1
1

+ sk−i−1
2

)]Gi,

Ik = sk1(s1 − a)c1 + sk2(s2 − a)c2 + a

k−1
∑

i=0

[((s1 − a)sk−1
1

+ (s2 − a)sk−1
2

)]Gi.

s1 =
a(1+ b)+

√

a2(1+ b)2 − 4ab

2
, s2 =

a(1+ b)−
√

a2(1+ b)2 − 4ab

2
.

Yk = QpJ
k
p C + Q





�k−1
i=0 J k−i−1

p P1Vi

sum
q∗−1

i=0
Hi
qP2Vk+i



.

Hq = 0

Yk = Qp

[

sk
1

0

0 sk
2

]

C + Q

[

∑k−1
i=0 J k−i−1

p P1Vi

0

]

.

Qp =





s1 s2
a a

s1 − a s2 − a



,

Qq =





1

0

0



.

Q =





s1 s2 1

a a 0

s1 − a s2 − a 0




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Finally, here P1 is the matrix which contains the right eigenvectors of the finite 
eigenvalues

Hence,

or, equivalently,

or, equivalently,

The proof is completed.

The way this method in this theorem reconstructs the Samuelson’s model can be also 
used in models of similar nature. For example, it can be used into other macroeconomic 
models, or models where the memory effect appears, and models with delays, see (Das-
sios et  al. 2017; Moaaz et  al. 2020a, b). In addition, this updated form of Samuelson’s 
model can provide new alternative methods to prove stability of similar dynamical sys-
tems, see (Apostolopoulos and Ortega 2018; Boutarfa and Dassios 2017; Dassios 2015b, 
2018a).

Yk =





s1 s2
a a

s1 − a s2 − a





�

sk
1

0

0 sk
2

�

C

+





s1 s2 1

a a 0

s1 − a s2 − a 0









�k−1
i=0

�

sk−i−1
1

0

0 sk−i−1
2

�

P1Vi

0



.

P1 =

[

a 1
a
s1

a 1
a
s2

]

.

Yk =





s1 s2
a a

s1 − a s2 − a





�

sk
1

0

0 sk
2

�

C

+





s1 s2 1

a a 0

s1 − a s2 − a 0













�k−1
i=0

�

sk−i−1
1

0

0 sk−i−1
2

��

a 1
a
s1

a 1
a
s2

�





Gi

0

0





0









,

Yk =









sk+1
1

c1 + sk+1
2

c2 + a
�k−1

i=0 [(s
k−1
1

+ sk−1
2

)]Gi

a(sk
1
c1 + sk

2
c2)+ a2

�k−1
i=0 [(s

k−i−1
1

+ sk−i−1
2

)]Gi

sk
1
(s1 − a)c1 + sk

2
(s2 − a)c2 + a

�k−1
i=0 [((s1 − a)sk−1

1
+ (s2 − a)sk−1

2
)]Gi









,





Tk

Ck

Ik



 =









sk+1
1

c1 + sk+1
2

c2 + a
�k−1

i=0 [(s
k−1
1

+ sk−1
2

)]Gi

a(sk
1
c1 + sk

2
c2)+ a2

�k−1
i=0 [(s

k−i−1
1

+ sk−i−1
2

)]Gi

sk
1
(s1 − a)c1 + sk

2
(s2 − a)c2 + a

�k−1
i=0 [((s1 − a)sk−1

1
+ (s2 − a)sk−1

2
)]Gi









.
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4.1 � Initial conditions

We assume system (4) and the known initial conditions (IC): Y2 . Note that it is a neces-
sity the initial condition to be Y2 because Yk is defined from Tk−1 , Tk−2 , and for k = 2 , T2 
is defined by T1,T0.

Definition 4.1  Consider the system (4) with known IC. Then, the IC are called consist-
ent if there exists a solution for the system (4) which satisfies the given conditions.

Proposition 4.1  (See Dassios 2015d) The IC of system (4) are consistent if and only if

Proposition 4.2  (See Dassios et al. 2014) Consider the system (4) with given IC. Then, 
the solution for the initial value problem is unique if and only if the IC are consistent. 
Then, the unique solution is given by the formula

where Dk =





�k−1
i=0 J k−i−1

p P1Vi

sum
q∗−1

i=0
Hi
qP2Vk+i



 and Zp
2
 is the unique solution of the algebraic system 

Y2 = QpZ
p
2
+ D2.

Proposition 4.2  The singular reformulated Samuelson’s model (4) has always a unique 
solution for any given initial conditions. 

Proof  The column Yk in (4) is defined as

whereby for k = 2, we get

or, equivalently, using (2), (3)

or, equivalently,

But T2 = a(1+ b)T1 − abT0 + Ḡ . Thus

Y2 ∈ colspanQp + QD2.

Yk = QpJ
k
p Z

p
2
+ QDk ,

Yk =





Tk

Ck

Ik



,

Y2 =





T2

C2

I2



,

Y2 =





T2

aT1

ab(T1 − T0)



.

Y2 =





1

0

0



T2 +





0

1

b



aT1 +





0

0

−b



aT0.
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However

Hence

or, equivalently,

Hence from Proposition 4.1, the IC of the singular reformulated Samuelson’s model (4) 
are always consistent and from Proposition 4.1, the singular reformulated Samuelson’s 
model (4) has a unique solution for given IC. The proof is completed.

5 � Conclusions
In this article, we focused and provided a new alternative formulation of the famous 
Samuelson macroeconomic model. We proved that this model can be studied via an 
equivalent singular system of difference equations using pencil theory. We provided 
properties for existence of solutions. As a future research, it is interesting to study stabil-
ity and stabilization properties for non-consistent initial conditions. For this case opti-
mization methods, see (Dassios et al. 2015), and concepts from graph theory, see (Cuffe 
et  al. 2016; Dassios et  al. 2019), will be required. For this idea, there is already some 
ongoing research in progress.
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Y2 =





1+ b
1

b



aT1 +





−b
0

b



aT0 +





1

0

0



Ḡ.

colspanQp =

�





1+ b
1

b



,





−b
0

b





�

, QD2 =





1

0

0



.

Y2 ∈

�





1+ b
1

b



,





−b
0

b





�

+





1

0

0



,

Y2 ∈ colspanQp + QD2.
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