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1  Introduction
Input–output (IO) analysis is common to economics. There are many useful associated 
multisectoral models to quantify impacts (economic, environmental, etc.) in territories 
with IO survey frameworks, usually regions, countries, and supranational unions. Yet its 
applicability becomes complicated when implemented at a sub-territorial level, particu-
larly smaller regions and areas (e.g., counties), which have no accounting frameworks for 
elevated costs and even lack basic information to execute robust projects. Even so, non-
survey techniques remain in use to generate sub-territorial tables based on the analytical 
capacity of the characteristic IO sector breakdown.

In general, economic accounts available for a given territory will serve as a reference. The 
available sub-territorial data (resulting from disaggregation) refer to certain basic magni-
tudes (industry production, employment, or gross added value) and match the same year 
with the corresponding sectoral breakdown. Data from a higher territorial level are thus 
commonly used to generate an IO table at local, regional and even national levels. Though 
different methods exist (Morrison and Smith 1974; Schaffer and Chu 1969; Bonfiglio and 
Chelli 2008), Location Quotients (LQs) are the most widely used methods, especially Flegg’s 
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Location Quotient (FLQ) or a modified version thereof, i.e., augmented FLQ (AFLQ). Dif-
ferent studies have held that LQs constitute an advance in generating IO tables (Flegg 
and Webber 1997, 2000; Flegg et al. 1995). Therefore, it is essential to select the LQ ver-
sion to use, either alone or supplemented by adjustment techniques (Lamonica et al. 2020). 
Though there is no clear majority on which LQ version yields the best results, some studies 
(Bonfiglio and Chelli 2008; Jahn et al. 2020) show the prevalence of FLQ and AFLQ, while 
others (Zhao and Choi 2015; Lamonica and Chelli 2018) take an opposing view to favor 
other ratios.

FLQ and AFLQ techniques have a parameter associated with the size of a certain mag-
nitude of the sub-territory that should be delimited within an interval. The optimum 
parameter per se varies from one sub-territory to another, though multiple research papers 
undertake this quest for the optimum value (Kowalewksi 2015; Flegg and Tohmo 2016; 
Lamonica and Chelli 2018). This unknown value becomes problematic, as its calculation 
is thus arduous (Lampiris et  al. 2019), probably because it is relatively sensitive due to 
the design of the corresponding formulas. Recently and in a context of identical available 
information, Pereira-López et al. (2020) rendered a two-dimensional reformulation of LQs 
(for domestic flow tables, though extrapolated to total flows with certain nuances), thus 
employing two parameters. However, these parameters are not associated with the size of 
the sub-territories but rather with the degree of specialization of the various branches of 
activity and sector size (by rows and columns, respectively). Their sensitivity will thus differ 
for FLQ and AFLQ parameters.

In short, the process of generating sub-territorial IO tables has not yet been clearly 
defined. Researchers are avidly searching for the most suitable LQ and parameters capable 
of yielding robust results. This paper mainly seeks to look at LQ performance and, in par-
ticular, uncover the most effective way to ascertain the standard parameters used in their 
formulation, especially regarding 2D-LQ. The present introduction (Sect. 1) is followed by 
an LQ overview (methods) in Sect. 2. Section 3 describes the data used and Sect. 4 (results) 
contains an analysis of traditional LQs and the 2D-LQ method. Finally, Sect. 5 compares 
the four examined LQs, identifies guiding parameters for 2D-LQ and indicates the main 
conclusions drawn.

2 � Methods
This section is a brief description of the main LQs. Numerous studies contain further 
details, including Schaffer and Chu (1969), Morrison and Smith (1974), Round (1978), 
Flegg and Webber (1997, 2000), Miller and Blair (2009), and Pereira-López et al. (2020).

The Simple Location Quotient (SLQ) is the most common approach, which compares the 
relative weight of a certain sectoral magnitude of a sub-territory with its relative weight in 
the territory. Analytically,

where xRi  is production (for instance) of sector i in region R , xR is the production in 
region R , xNi  is the production of sector i in the entire country ( N  ), and xN is the pro-
duction of the entire country. Therefore, wxRi  represents the weight of the production 
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of region R ’s sector i in the production of the total economy’s sector i ; and wxR corre-
sponds to the participation of the production of region R in the total production of the 
country. This LQ in some way indicates whether the sector can be self-sufficient or an 
exporter, or whether the sector imports from other regions. However, it does not con-
sider the importance of the purchaser section.

The Cross-Industry Location Quotient (CILQ) considers the relative importance of 
the selling industry to the purchasing industry, as shown below:

where the subscript j refers to purchasing sectors.
Given that the formulation above excludes, for the sake of simplification, the size of 

the region in the process, Flegg and Webber (1997) proposed the FLQ method, which is 
defined as follows:

The effect of region size is usually abbreviated as:

In this expression, the parameter δ is a coefficient associated with interregional 
imports, after which � works as a corrective element of the CILQ. Following the stand-
ard procedure, the regional technical coefficients aRij are the result of corrections on the 
national coefficients aNij  , namely:

McCann and Dewhurst (1998) warned that FLQ does not appropriately address sce-
narios in which regional industries are more specialized than national industries. Flegg 
and Webber (2000) then rectified columns (semi-logarithmic smoothing) for specialized 
purchasing sectors. The result was the Augmented FLQ (AFLQ):

Thus, greater sectoral specialization leads to a larger coefficient and consequent reduc-
tion in imports.

As an initial step in designing a generalization of the Flegg methodology, Pereira-
López et  al. (2020) proposed a bidimensional approach (2D-LQ) to estimate domestic 
coefficients at the sub-territorial level. This technique can be extrapolated to other con-
texts, such as generating flow matrices, total coefficients, or multipliers.

This bidimensional approach is represented in the following matrix expression:
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(5)
aRij = aNij · FLQij if FLQij ≤ 1

aRij = aNij if FLQij > 1.
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where A is a matrix of intermediate domestic coefficients, R(α) and S(β) are diagonal 
matrices, whose elements appear in the main diagonal work as weighting factors. Scalars 
α and β are the influential parameters in row and column corrections, respectively. There 
are different ways to address these corrections, and they do not necessarily have the 
same behavior. The authors indicate the possibility of using different smoothing (semi-
logarithmic, potential, or hyperbolic tangent function) to address such corrections.

The generic element of the projected matrix, ÃR , through the proposed alternative, is:

The function y = tan h(x) is propitious, since it is increasing for x > 0 , and when x 
tends to +∞ , the function approaches 1, expressing an asymptotic behavior with respect 
to line y = 1 . In this context, the function 

[

1
2 tan h

(

SLQi − 1
)

+ 1
]α

 permits slightly 

higher factors (when SLQi > 1 ) than the ones in the reference table.

3 � Data sources
Contrasting estimated coefficients against true coefficients is no easy task for certain 
regions or small areas, given the insufficiency of data gleaned in surveys and even the 
non-uniformity of the information at different territorial levels, e.g., countries/regions. 
In this case, we opted to compare and contrast ten (10) Euro Area 19 countries (EA-19). 
The database downloaded from Eurostat (https://​ec.​europa.​eu/​euros​tat/​web/​esa-​sup-
ply-​use-​input-​tables/​data/​datab​ase) contains symmetric 64 × 64 matrices at basic prices 
(product by product) [naio_10_cp1700]. IO tables (2010 and 2015) were then filtered for 
ten countries, namely Austria, Belgium, Estonia, France, Germany, Italy, Latvia, Slova-
kia, Slovenia, and Spain. For these purposes, it should be noted that these 10 countries 
represented 84.39% of EA-19 production (Austria 3.06%, Belgium 4.22%, Estonia 0.17%, 
France 19.89%, Germany 26.79%, Italy 17.42%, Latvia 0.21%, Slovakia 0.85%, Slovenia 
0.39% and Spain 11.40%). Their production volume was 83.79% in 2015: (Austria 3.27%, 
Belgium 4.33%, Estonia 0.21%, France 19.79%, Germany 28.27%, Italy 15.99%, Latvia 
0.24%, Slovakia 0.96%, Slovenia 0.38% and Spain 10.35%). Ireland, Malta, Portugal, Fin-
land, Greece, Lithuania, Netherlands, Cyprus, and Luxembourg lacked IO tables for one 
or two years analyzed, or showed confidential or provisional data. For these reasons, the 
present analysis excluded the remaining nine countries.

The aforementioned extraction is based on the European System of Accounts (ESA) 
2010, specifically on the Classification of Products by Activity (CPA) 2008. We opted to 
use sector outputs instead of the employment vector or gross added value, since, accord-
ing to Flegg and Tohmo (2019), “It should be noted that the SLQ and CILQ are defined 
in terms of output rather than the more usual employment. Using output is preferable 
to using a proxy such as employment because output figures are not distorted by differ-
ences in productivity across regions.”
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4 � Results
4.1 � Analysis

We used the following statistics to compare estimated domestic coefficient matrices 
(CILQ, FLQ, AFLQ and 2D-LQ) with true matrices to ascertain the most appropriate LQ 
approach for executing projections of sub-territorial IO tables. As an example, see the 
projection using LQs for Austria in 2010 (Additional file 1). These statistics are Stand-
ardized Total Percentage Error (STPE), Mean Absolute Difference (MAD), Mean Abso-
lute Percentage Error (MAPE), Standard Deviation of the Mean Absolute Difference 
(SD-MAD), and Theil Index (U). The following equations are used to calculate these 
statistics:

where aRij is the true sub-territorial coefficient—usually regional—and ãRij is the estimated 
sub-territorial coefficient; n is the number of products/sectors.

STPE is used to calculate the relative distance in absolute terms between the estimated 
coefficient and the true coefficient. Multiplying it by one hundred yields error as a per-
centage (Jalili 2000; Jackson and Murray 2004; Bonfiglio 2005; Flegg et  al. 2016; Lam-
piris et al. 2019). MAD calculates the difference (in absolute values) between estimated 
and true coefficients, yielding the absolute mean of the differences when divided by the 
total number of elements in the matrix (Morrison and Smith 1974; Jackson and Murray 
2004; Bonfiglio 2005; Bonfiglio and Chelli 2008; Miller and Blair 2009; Kowalewksi 2015; 
Wiebe and Lenzen 2016; Lamonica and Chelli 2018; Lampiris et  al. 2019; Lamonica 
et al. 2020). MAPE is practically the average of STPE (Oosterhaven et al. 2003; Mínguez 
et al. 2009; Miller and Blair 2009; Lampiris et al. 2019; Flegg and Tohmo 2019; Jahn et al. 
2020). SD-MAD is the standard deviation to the median absolute deviation between the 
estimated and true coefficients (Lamonica and Chelli 2018). Theil Index is known as the 
inequality index, since it estimates the overall distance ratio, and thus indicates perfect 
equality when equal to zero (Jalili 2000; Lahr and Stevens 2002; Jackson and Murray 
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ãRij − aRij

∣

∣

∣
,

(11)MAPE =
100

n2

n
∑

i=1

n
∑

j=1

∣

∣

∣
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2004; Bonfiglio 2005; Flegg and Tohmo 2013, 2019; Kowalewksi 2015; Flegg et al. 2016; 
Lampiris et al. 2019; Jahn et al. 2020). This study compares matrices element by element, 
unlike other works, which focus solely on sums by rows or columns through a matrix of 
coefficients or the Leontief inverse matrix. Working with sum vectors (rows or columns) 
yields inaccuracies, since errors are easily offset.

4.2 � Sensitivity analysis of traditional location quotients

The starting point begins with sub-territorial coefficients generated by CILQ, FLQ, and 
AFLQ. As we have seen from (3) to (6), the last two equations incorporate the param-
eter δ (as an exponent), which is somehow associated with interregional imports. There 
have been numerous discussions regarding the optimal value for this parameter, though 
it should vary based on sub-territory size, since, in reality, the goal is to ascertain a suit-
able � that depends on δ. For instance, Flegg and Webber (2000) suggest, in the absence 
of information, assigning 0.3 as the value for δ . However, in a study for the Italian Le 
Marche region through the Monte Carlo simulation, Bonfiglio (2009) maintains that this 
parameter is centered on 0.3 (for FLQ) with an associated probability of 33% (with the 
interval width set at 0.1), and between 0.3 and 0.4 for AFLQ, with a probability of 38%. 
In a study for 20 regions in Finland, Flegg and Thomo (2013) set this figure between 0.15 
and 0.35. The results concur with the Bonfiglio study in that an optimal value of 0.3 can 
only be expected in a third of the regions, and thus a true optimal value has yet to be 
found. Kowalewksi (2015) applied an extension of the Flegg methodology and revealed 
values between 0.11 and 0.17, which are relatively low compared to previous studies. 
Lampiris et  al. (2019) compared technical coefficient matrices and estimated Leontief 
inverse matrices using traditional LQs for several EU countries. Their results allow us to 
affirm that AFLQ and FLQ yield better results for δ values between 0.1 and 0.3, yet prove 
unsatisfactory for values higher than 0.3.

Figures 1 and 2 show the STPEs related to traditional LQs for the ten countries studied 
(2010 and 2015).1 Both figures show that FLQ and AFLQ curves are convex around the 
optimum, yet exceed the (constant) value of CILQ considerably from certain thresholds 
marked by values of δ . However, when δ tends to 1, the curves behave nearly asymptotic 
(horizontal) and virtually converge. Once breaching thresholds, these two techniques 
must be ruled out to the detriment of the CILQ equation, even though the latter is much 
more elemental. As a general guideline, one can conclude that δ is quite sensitive when it 
tends to 1 on the left (values between 0 and 1). The statistical figures would also shoot off 
if selecting the wrong value, rendering the results questionable. 

However, the substantial is clearly given by the degree of approximation of the dif-
ferent matrices. Therefore, larger countries seemingly behave better than smaller ones, 
which should not be surprising given that the higher their proportion, the more produc-
tive structures will resemble the reference area. The STPEs for France, Germany, Italy, 
and Spain (2010 and 2015) are lower than the figures for the other six countries analyzed. 
These results concur with the figures indicated for 2005 in Pereira-López et al. (2020). 
There is a similar diagnosis concerning the other four statistics. Refer to Appendix.

1  The charts are all associated with the STPE statistic. The results of the remaining statistics (MAD, MAPE, SD-MAD 
and Theil) are specified in Table 1 in Appendix.
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Though the mentioned figures appear rather explicit, certain δ parameters of the 
two examined curves intersect the CILQ line (not depending on δ ). Thus, out of the 
ten countries analyzed in 2010, only Belgium lets us assign the maximum value to the 
parameters for FLQ, which must be less than or equal to 0.47, and for AFLQ, which must 
be less than or equal to 0.5. France, Germany, Italy, and Spain yielded smaller relative 
distances between CILQ and the optimum associated with AFLQ, improving results 
by 4.46%, 2.86%, 8.23%, and 3.20%, respectively. Meanwhile, the other countries show 
greater distances, as clearly seen in Fig. 1. Nearly the same curves and corresponding 
intersections with the CILQ line reappear for 2015. For instance, the following extreme 
values: 0.52 in Belgium (for FLQ) and 0.57 in Germany (for AFLQ). France, Germany, 
Italy, and Spain yielded smaller relative distances between CILQ and the optimum for 
AFLQ (figures relatively similar to 2010 figures, namely 5.15%, 3.91%, 3.93%, and 3.51%, 
respectively). Once again, the other countries mark wider distances, though there is also 
more room for improvement since the STPEs are higher.

Compared to FLQ, AFLQ slightly reduces errors in matrix estimates. This circum-
stance repeats for virtually all the countries in 2010 and 2015. Slovenia (2010 and 2015) 
and Estonia (2015) are the sole exceptions, where positions are exchanged between both 
techniques. We thus would tend to work with AFLQ as the most efficient traditional 

Fig. 1  Sensitivity analysis using STPE for ten EA-19 countries in 2010
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technique, albeit aware of the need to ascertain an optimal δ , conditioned by the size of 
the sub-territories. In light of the figures above, when the value of δ exceeds 0.3, FLQ and 
AFLQ are no longer effective techniques, and CILQ thus becomes preferred to forestall 
estimation errors. One may surmise that the Flegg equation incorporates basic informa-
tion (overall size of sub-territory), specifically in estimating, and alternatives could be 
sought to efficiently address this information and thus avoid the highly sensitive δ , par-
ticularly from a given value (as indicated above). The foregoing becomes key in 2D-LQ 
design, construed as one of the possible generalizations of Flegg’s formula.

4.3 � Estimating parameters of the 2D‑LQ method

The 2D-LQ method is characterized by its use of the sectoral degrees of specialization at 
the sub-territorial level (by rows), yet with an alternative formulation that excludes the 
sub-territorial effect size at the global level. In other words, it seeks to circumvent the 
sensitivity of parameter δ . This section graphically demonstrates the method’s robust-
ness and also indicates pairs of suitable parameters to apply in future LQ applications. 
Appendix contains the values of the global minimum statistics and associated pairs.

Figures  3 and 4 show three-dimensional, country-by-country representations of the 
STPE statistic against parameters α and β for 2010 and 2015. The corresponding contour 

Fig. 2  Sensitivity analysis using STPE for ten EA-19 countries in 2015
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lines are also highlighted with a fixed gradation by country and year. The optimal pair of 
parameters and behavior of the scalar field in its environment is visible. Appendix con-
tains information on the global minimums on each scalar field for STPE and the other 
four statistics. The scalar fields have a convex behavior.

The graphical representations for MAD and MAPE are identical and virtually similar 
for SD-MAD and U, though the statistics change when relativizing distances in another 
way. In the scalar fields, common patterns are not clear according to the size of the coun-
tries. Of course, there is a nearly perfect country-by-country match in the fields for the 
2 years studied.

Movements through β ( y axis) entail more significant errors than movements through 
α ( x axis). In general, the minimums tend to stay between 0.26 and 1.52 for α and 0.02 
and 0.21 for β (in 2010). The ranges in 2015 are quite similar, respectively, between 0.32 

Fig. 3  Estimating 2D-LQ for ten EA-19 countries in 2010

Fig. 4  Estimating 2D-LQ for ten EA-19 countries in 2015
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and 1.28 and 0.08 and 0.21. In light of the obtained STPEs ( z axis), the behaviors of 
France, Germany, Italy, and Spain are better than the rest, most likely because of their 
size in the EA-19. Moreover, it is understood that generating IO tables for sub-territories 
with a reduced proportion within the total could be misleading, particularly if no post-
adjustment techniques are implemented.

5 � Discussion and conclusions
We compare the four studied LQs in this section, which entails extracting combined 
information, initially from Figs. 1 and 3, and then from Figs. 2 and 4. Scalar field inter-
cessions are essentially based on the traditional LQs for the different countries and the 
2  years studied, yielding areas delimited by contour lines conditioned by CILQ, FLQ, 
and AFLQ values. The validity of the techniques (ordered from lowest to highest) has 
thus far appeared as follows: CILQ, FLQ, AFLQ, and 2D-LQ. However, FLQ and AFLQ 
switch in some cases for a slight difference in the statistics, namely Slovenia (2010 and 
2015) and Estonia (2015), as indicated above.

We opted to map the different countries (2010 and 2015) to condense results. Fig-
ures 5 and 6 focus on rendering an effectively staggered 2D-LQ compared to the other 
techniques: CILQ, FLQ, and AFLQ. The figures are clearly interpretable. The central 
core expresses the superiority of 2D-LQ over the next most efficient technique, which is 
almost always AFLQ. An intermediate ring appears to mark the distance between AFLQ 
and FLQ (though this ring clearly does not exist in the three noted exceptions). Finally, 
an outer ring reflects the superiority of FLQ over CILQ. The shapes of the areas have 
some homogeneity, and the global minima given by optimal pairs (2D-LQ) are more or 
less centered. Numerous parameter combinations yield better statistics compared to 
other techniques, which merely requires looking at the epicenters and recalling the con-
vexity of the scalar fields in Figs. 3 and 4. Concerning the degree of rigidity of parameters 
α and β , β is clearly more sensitive; i.e., small changes lead to bigger errors. In effect, the 
ratio used between α and β to design the charts is 4/1.

Fig. 5  Mapping for ten EA-19 countries in 2010
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These figures exclude the STPE values, though it is evident that the lower they are, 
the more difficult it is to reduce them. For comparison, the largest country, Germany 
(year 2010), reduces the STPE from 56.54 (CILQ) to 53.38 (2D-LQ), so the improve-
ment in stages from CILQ is 1.88% (FLQ), 2.86% (AFLQ), and 5.58% (2D-LQ). This 
gradual reduction is shown in the corresponding chart. In relation to another much 
smaller country, Slovakia (2010), its STPE went from 80.19 (CILQ) to 72.32 (2D-LQ). 
The improvements are 6.16% (FLQ), 8.48% (AFLQ), and 9.82% (2D-LQ), as shown in the 
illustration.

Only concerning AFLQ, Figs. 7 and 8 reveal the range of α values (associated with 
the optimal β value) for 2010 and 2015, respectively. Optimal β values and less errors 
in 2D-LQ vs. AFLQ. The intervals express a considerable amplitude, i.e., parameters 
linked to row rectifications do not excessively incur estimated penalties, which is 

Fig. 6  Mapping for ten EA-19 countries in 2015

Fig. 7  Superiority of 2D-LQ front AFLQ (δ*): width of the α range in 2010
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significant since an average value can be set regardless of the sub-territory size. This 
thus ensures errors lower than the AFLQ. The width of β intervals is much smaller 
than α intervals. In principle, it is possible to work with an average value of β around 
0.10, except Germany (larger country). By way of synthesis, it should be noted that 
the comparison between AFLQ and 2D-LQ techniques affords us a guide to param-
eters that can be used in this field of work.

There is no clear relationship between the width of 2D-LQ method parameter 
ranges and its relative distance with the AFLQ method. Of course, for all the sub-
territories studied, the 2D-LQ method has a wide range of parameters that guaran-
tee fewer errors than the AFLQ in the optimal δ (generally unknown).

In conclusion, this study contrasted matrices element by element, but not by vec-
tor sums for rows or columns. This working method is deemed appropriate to fore-
stall possible compensation for errors. The results of the statistics are consistent 
with those of other similar studies. The 2D-LQ method demonstrably improves the 
estimates of prior LQs (CILQ, FLQ and AFLQ). Therefore, this technique is use-
ful, yet requires a longer journey, at least for the sake of parameter contrasting. It 
is nevertheless recommended to supplement IO tables (via 2D-LQ or another LQ) 
with optimization processes, so long as there is additional information, e.g., other 
macroeconomic magnitudes not used in the LQ equations. In this regard, resorting 
to basic RAS or cross-entropy (Lamonica et  al. 2020) could be somewhat mislead-
ing since LQs are applied in contexts that lack information. Adjustments are thus 
suggested for projections secured through the Euromethod or Path-RAS (Mahajan 
et al. 2018). Both techniques are, in a way, generalizations of the basic RAS and char-
acterized by implementing other types of adjustments in light of the lack of available 
information. This was in any case not the purpose of this article yet should never-
theless be the object of a future and necessary research.

Appendix
See Table 1.

Fig. 8  Superiority of 2D-LQ front AFLQ (δ*): width of the α range in 2015
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Table 1  Assessment of IO table projections via LQs for EA-19 countries (2010 and 2015)

Countries 2010 2015

CILQ FLQ (δ) AFLQ (δ) 2D-LQ 
(α; β)

CILQ FLQ (δ) AFLQ (δ) 2D-LQ 
(α; β)

STPE
Austria 73.4995 69.6879 

(0.18)
68.2299 

(0.20)
66.6016 (0.50; 
0.12)

75.4435 70.9785 
(0.19)

69.0646 
(0.21)

67.0937 (0.68; 
0.13)

Belgium 75.4562 68.6528 
(0.21)

68.3947 
(0.24)

66.7671 (0.80; 
0.14)

77.0734 69.3534 
(0.25)

68.7097 
(0.26)

67.5910 (0.92; 
0.15)

Estonia 92.2069 81.6705 
(0.13)

81.1942 
(0.17)

77.5070 (1.10; 
0.12)

94.3536 82.6840 
(0.12)

82.7006 
(0.18)

77.1978 (1.04; 
0.12)

France 51.6088 50.1284 
(0.17)

49.3062 
(0.20)

48.0252 (0.86; 
0.09)

55.0476 53.1773 
(0.19)

52.2111 
(0.20)

49.9730 (1.10; 
0.10)

Germany 56.5391 55.4739 
(0.18)

54.9237 
(0.31)

53.3835 (0.26; 
0.21)

58.0644 56.8606 
(0.20)

55.7934 
(0.32)

54.2872 (0.44; 
0.21)

Italy 55.5537 52.0088 
(0.08)

50.9841 
(0.13)

49.0212 (1.10; 
0.07)

55.2133 54.2537 
(0.12)

53.0440 
(0.15)

51.0279 (1.04; 
0.09)

Latvia 91.0184 83.7678 
(0.15)

81.7131 
(0.17)

75.9635 (1.52; 
0.07)

90.7480 82.8537 
(0.17)

79.7378 
(0.18)

74.7490 (1.28; 
0.08)

Slovakia 80.1889 75.2500 
(0.15)

73.3860 
(0.18)

72.3167 (0.86; 
0.08)

83.9898 77.8713 
(0.19)

76.0804 
(0.20)

75.5784 (0.98; 
0.10)

Slovenia 82.1660 78.6179 
(0.09)

79.4358 
(0.14)

75.1431 (0.26; 
0.10)

84.6056 78.7981 
(0.12)

78.8749 
(0.14)

76.5708 (0.32; 
0.11)

Spain 56.6842 56.3444 
(0.06)

54.8686 
(0.09)

53.7071 (1.04; 
0.02)

61.0079 60.1019 
(0.10)

58.8638 
(0.13)

58.4667 (0.92; 
0.08)

MAD
Austria 0.0044 0.0041 (0.18) 0.0040 (0.20) 0.0040 (0.50; 

0.12)
0.0043 0.0040 (0.19) 0.0039 (0.21) 0.0038 (0.68; 

0.13)

Belgium 0.0046 0.0042 (0.21) 0.0041 (0.24) 0.0041 (0.80; 
0.14)

0.0045 0.0041 (0.25) 0.0040 (0.26) 0.0040 (0.92; 
0.15)

Estonia 0.0048 0.0042 (0.13) 0.0042 (0.17) 0.0040 (1.10; 
0.12)

0.0048 0.0042 (0.12) 0.0042 (0.18) 0.0039 (1.04; 
0.12)

France 0.0033 0.0033 (0.17) 0.0032 (0.20) 0.0031 (0.86; 
0.09)

0.0034 0.0033 (0.19) 0.0032 (0.20) 0.0031 (1.10; 
0.10)

Germany 0.0036 0.0036 (0.18) 0.0035 (0.31) 0.0034 (0.26; 
0.21)

0.0036 0.0035 (0.20) 0.0035 (0.32) 0.0034 (0.44; 
0.21)

Italy 0.0038 0.0037 (0.08) 0.0037 (0.13) 0.0035 (1.10; 
0.07)

0.0040 0.0039 (0.12) 0.0038 (0.15) 0.0037 (1.04; 
0.09)

Latvia 0.0058 0.0053 (0.15) 0.0052 (0.17) 0.0048 (1.52; 
0.07)

0.0050 0.0046 (0.17) 0.0044 (0.18) 0.0041 (1.28; 
0.08)

Slovakia 0.0047 0.0045 (0.15) 0.0043 (0.18) 0.0043 (0.86; 
0.08)

0.0050 0.0046 (0.19) 0.0045 (0.20) 0.0045 (0.98; 
0.10)

Slovenia 0.0047 0.0045 (0.09) 0.0045 (0.14) 0.0043 (0.26; 
0.10)

0.0047 0.0044 (0.12) 0.0044 (0.14) 0.0043 (0.32; 
0.11)

Spain 0.0039 0.0039 (0.06) 0.0038 (0.09) 0.0037 (1.04; 
0.02)

0.0040 0.0040 (0.10) 0.0039 (0.13) 0.0039 (0.92; 
0.08)

MAPE
Austria 0.0191 0.0181 (0.18) 0.0177 (0.20) 0.0173 (0.50; 

0.12)
0.0196 0.0185 (0.19) 0.0180 (0.21) 0.0175 (0.68; 

0.13)

Belgium 0.0196 0.0179 (0.21) 0.0178 (0.24) 0.0174 (0.80; 
0.14)

0.0201 0.0180 (0.25) 0.0179 (0.26) 0.0176 (0.92; 
0.15)

Estonia 0.0240 0.0212 (0.13) 0.0211 (0.17) 0.0202 (1.10; 
0.12)

0.0245 0.0215 (0.12) 0.0215 (0.18) 0.0201 (1.04; 
0.12)

France 0.0134 0.0130 (0.17) 0.0128 (0.20) 0.0125 (0.86; 
0.09)

0.0143 0.0138 (0.19) 0.0136 (0.20) 0.0130 (1.10; 
0.10)

Germany 0.0147 0.0144 (0.18) 0.0143 (0.31) 0.0139 (0.26; 
0.21)

0.0151 0.0148 (0.20) 0.0145 (0.32) 0.0141 (0.44; 
0.21)
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The optimal parameter values for each LQs are indicated in parentheses. The global minimum for the statistic is shown in 
italic

Table 1  (continued)

Countries 2010 2015

CILQ FLQ (δ) AFLQ (δ) 2D-LQ 
(α; β)

CILQ FLQ (δ) AFLQ (δ) 2D-LQ 
(α; β)

Italy 0.0137 0.0135 (0.08) 0.0133 (0.13) 0.0128 (1.10; 
0.07)

0.0144 0.0141 (0.12) 0.0138 (0.15) 0.0133 (1.04; 
0.09)

Latvia 0.0237 0.0218 (0.15) 0.0213 (0.17) 0.0198 (1.52; 
0.07)

0.0236 0.0216 (0.17) 0.0207 (0.18) 0.0194 (1.28; 
0.08)

Slovakia 0.0209 0.0196 (0.15) 0.0191 (0.18) 0.0188 (0.86; 
0.08)

0.0218 0.0203 (0.19) 0.0198 (0.20) 0.0197 (0.98; 
0.10)

Slovenia 0.0214 0.0205 (0.09) 0.0207 (0.14) 0.0195 (0.26; 
0.10)

0.0220 0.0205 (0.12) 0.0205 (0.14) 0.0199 (0.32; 
0.11)

Spain 0.0147 0.0147 (0.06) 0.0143 (0.09) 0.0140 (1.04; 
0.02)

0.0159 0.0156 (0.10) 0.0153 (0.13) 0.0152 (0.92; 
0.08)

SD-MAD
Austria 0.0137 0.0137 (0.00) 0.0134 (0.05) 0.0135 (0.56; 

0.01)
0.0135 0.0135 (0.01) 0.0130 (0.06) 0.0130 (0.74; 

0.01)

Belgium 0.0151 0.0144 (0.12) 0.0144 (0.15) 0.0143 (0.56; 
0.06)

0.0153 0.0141 (0.15) 0.0140 (0.18) 0.0141 (0.80; 
0.07)

Estonia 0.0150 0.0132 (0.09) 0.0134 (0.15) 0.0129 (0.80; 
0.05)

0.0151 0.0129 (0.10) 0.0132 (0.16) 0.0126 (0.62; 
0.07)

France 0.0086 0.0084 (0.09) 0.0081 (0.13) 0.0075 (0.92; 
0.03)

0.0092 0.0087 (0.15) 0.0082 (0.19) 0.0074 (0.92; 
0.05)

Germany 0.0102 0.0102 (0.00) 0.0101 (0.09) 0.0097 (0.62; 
0.00)

0.0101 0.0101 (0.00) 0.097 (0.11) 0.0092 (0.80; 
0.01)

Italy 0.0108 0.0100 (0.19) 0.0097 (0.24) 0.0094 (0.98; 
0.09)

0.0112 0.0102 (0.19) 0.0100 (0.23) 0.0093 (1.16; 
0.11)

Latvia 0.0168 0.0161 (0.06) 0.0156 (0.13) 0.0145 (1.10; 
0.03)

0.0167 0.0166 (0.02) 0.0159 (0.10) 0.0148 (0.92; 
0.01)

Slovakia 0.0140 0.0139 (0.02) 0.0137 (0.10) 0.0136 (0.44; 
0.02)

0.0155 0.0154 (0.03) 0.0150 (0.10) 0.0151 (0.50; 
0.02)

Slovenia 0.0145 0.0140 (0.05) 0.0145 (0.10) 0.0141 (0.08; 
0.06)

0.0162 0.0156 (0.06) 0.0157 (0.11) 0.0154 (0.14; 
0.06)

Spain 0.0110 0.0109 (0.06) 0.0105 (0.11) 0.0104 (0.92; 
0.00)

0.0125 0.0123 (0.08) 0.0120 (0.13) 0.0122 (0.56; 
0.03)

Theils
Austria 61.1455 61.1455 

(0.00)
59.6314 

(0.06)
60.4973 

(0.56; 0.02)
61.4834 61.4269 

(0.01)
59.0615 

(0.07)
59.3308 

(0.80; 0.02)

Belgium 72.3667 68.5536 
(0.13)

68.6360 
(0.15)

68.2197 (0.62; 
0.07)

74.7101 68.7492 
(0.16)

68.4625 
(0.19)

68.5660 
(0.80; 0.07)

Estonia 82.3278 72.5117 
(0.09)

73.7562 
(0.15)

70.8120 (0.86; 
0.06)

87.1358 74.7504 
(0.10)

76.3152 
(0.16)

73.0488 (0.62; 
0.07)

France 47.0037 45.8011 
(0.09)

44.0643 
(0.13)

41.0625 (0.92; 
0.03)

51.6500 48.7922 
(0.16)

46.6069 
(0.19)

42.2002 (0.98; 
0.05)

Germany 49.6259 49.6259 
(0.00)

49.3755 
(0.10)

47.5895 (0.62; 
0.01)

50.3366 50.3366 
(0.00)

48.8274 
(0.12)

46.5817 (0.80; 
0.02)

Italy 58.2963 54.3184 
(0.18)

53.0215 
(0.23)

50.9990 (0.98; 
0.09)

61.7249 57.1349 
(0.18)

55.6855 
(0.23)

52.1613 (1.16; 
0.11)

Latvia 78.4507 74.9980 
(0.07)

72.7200 
(0.13)

67.3222 (1.10; 
0.03)

72.9161 72.2389 
(0.03)

69.0737 
(0.10)

64.4627 (0.92; 
0.01)

Slovakia 65.9687 65.4229 
(0.03)

64.3763 
(0.10)

64.2581 (0.44; 
0.03)

69.3574 68.5305 
(0.04)

66.8900 
(0.11)

67.3646 
(0.56; 0.02)

Slovenia 74.6075 71.8624 
(0.05)

74.3736 
(0.10)

72.1310 
(0.14; 0.06)

79.5425 76.4087 
(0.07)

77.0159 
(0.12)

75.8484 (0.20; 
0.06)

Spain 52.9878 52.2704 
(0.06)

50.4862 
(0.11)

49.8286 (0.92; 
0.00)

58.4636 57.3348 
(0.08)

55.9103 
(0.13)

56.9373 
(0.62; 0.03)
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